Advertisement

Soft Computing

, Volume 20, Issue 7, pp 2733–2757 | Cite as

Preference representation using Gaussian functions on a hyperplane in evolutionary multi-objective optimization

  • Kaname Narukawa
  • Yu Setoguchi
  • Yuki Tanigaki
  • Markus Olhofer
  • Bernhard Sendhoff
  • Hisao Ishibuchi
Methodologies and Application

Abstract

Many-objective optimization has attracted much attention in evolutionary multi-objective optimization (EMO). This is because EMO algorithms developed so far often degrade their search ability for optimization problems with four or more objectives, which are frequently referred to as many-objective problems. One of promising approaches to handle many objectives is to incorporate the preference of a decision maker (DM) into EMO algorithms. With the preference, EMO algorithms can focus the search on regions preferred by the DM, resulting in solutions close to the Pareto front around the preferred regions. Although a number of preference-based EMO algorithms have been proposed, it is not trivial for the DM to reflect his/her actual preference in the search. We previously proposed to represent the preference of the DM using Gaussian functions on a hyperplane. The DM specifies the center and spread vectors of the Gaussian functions so as to represent his/her preference. The preference handling is integrated into the framework of NSGA-II. This paper extends our previous work so that obtained solutions follow the distribution of Gaussian functions specified. The performance of our proposed method is demonstrated mainly for benchmark problems and real-world applications with a few objectives in this paper. We also show the applicability of our method to many-objective problems.

Keywords

Many-objective optimization Preference Evolutionary multi-objective optimization (EMO)  Decision making  Hyperplane Gaussian function 

References

  1. Allmendinger R, Knowles J (2013) Hang on a minute: Investigations on the effects of delayed objective functions in multiobjective optimization. In: Purshouse R, Fleming P, Fonseca C, Greco S, Shaw J (eds) Evolutionary multi-criterion optimization: EMO 2013, Lecture Notes in Computer Science, vol 7811, pp 6–20. SpringerGoogle Scholar
  2. Auger A, Bader J, Brockhoff D, Zitzler E (2009) Articulating user preferences in many-objective problems by sampling the weighted hypervolume. In: Proc. of 2009 Genetic and Evolutionary Computation Conference, pp 555–562. ACMGoogle Scholar
  3. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669CrossRefMATHGoogle Scholar
  4. Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees in multi-objective optimization. In: Parallel Problem Solving from Nature-PPSN VIII, pp 722–731. SpringerGoogle Scholar
  5. Branke J, Deb K, Miettinen K, Slowinski R (2008) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, HeidelbergGoogle Scholar
  6. Censor Y (1977) Pareto optimality in multiobjective problems. Appl Math Optim 4(1):41–59MathSciNetCrossRefMATHGoogle Scholar
  7. Chankong V, Haimes Y (1983) Multiobjective decision making: theory and methodology. Dover Publications, North-Holland, AmsterdamGoogle Scholar
  8. Coello C (2000) Handling preferences in evolutionary multiobjective optimization: a survey. In: Proceedings of 2000 IEEE Congress on Evolutionary Computation, pp 30–37. IEEEGoogle Scholar
  9. Coello C, Lamont G, Van Veldhuizen D (2007) Evolutionary algorithms for solving multi-objective problems. Genetic and evolutionary computation. Springer, USGoogle Scholar
  10. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester, EnglandGoogle Scholar
  11. Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601CrossRefGoogle Scholar
  12. Deb K, Kumar A (2007) Light beam search based multi-objective optimization using evolutionary algorithms. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation, pp 2125–2132. IEEEGoogle Scholar
  13. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  14. Deb K, Sundar J, Udaya Bhaskara Rao N, Chaudhuri S (2006) Reference point based multi-objective optimization using evolutionary algorithms. Int J Comput Intell Res 2(3):273–286MathSciNetGoogle Scholar
  15. Deb K, Thiele L, Laumanns M, Zitzler E (2001) Scalable test problems for evolutionary multi-objective optimization. Tech. Rep. 2001001, Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology KanpurGoogle Scholar
  16. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of 2002 IEEE Congress on Evolutionary Computation (World Congress on Computational Intelligence), pp 825–830. IEEEGoogle Scholar
  17. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R (eds) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, Advanced Information and Knowledge Processing, pp 105–145. SpringerGoogle Scholar
  18. Fishburn P (1974) Lexicographic orders, utilities and decision rules: a survey. Manag Sci 20(11):1442–1471MathSciNetCrossRefMATHGoogle Scholar
  19. Haimes Y, Ladson L, Wismer D (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1(3):296–297MathSciNetCrossRefMATHGoogle Scholar
  20. Handl J, Knowles J (2013) Evidence accumulation in multiobjective data clustering. In: Purshouse R, Fleming P, Fonseca C, Greco S, Shaw J (eds) Evolutionary multi-criterion optimization: EMO 2013, Lecture Notes in Computer Science, vol 7811, pp 543–557. Springer (2013)Google Scholar
  21. Ishibuchi H, Narukawa K (2005) Comparison of evolutionary multiobjective optimization with reference solution-based single-objective approach. In: Proceedings of 2005 Genetic and Evolutionary Computation Conference, pp 787–794. ACMGoogle Scholar
  22. Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. In: Proceedings of 2008 IEEE Congress on Evolutionary Computation (World Congress on Computational Intelligence), pp 2419–2426. IEEEGoogle Scholar
  23. Ishibuchi H, Tsukamoto N, Sakane Y, Nojima Y (2010) Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions. In: Proceedings of 2010 Genetic and Evolutionary Computation Conference, pp 527–534. ACMGoogle Scholar
  24. Jaszkiewicz A, Słowiński R (1999) The light beam search approach: an overview of methodology and applications. Eur J Oper Res 113(2):300–314CrossRefMATHGoogle Scholar
  25. Knowles J, Corne D (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8(2):149–172CrossRefGoogle Scholar
  26. Korhonen P, Wallenius J (2008) Visualization in the multiple objective decision-making framework. In: Multiobjective optimization, Lecture Notes in Computer Science, vol 5252, pp 195–212. SpringerGoogle Scholar
  27. Lotov A, Miettinen K (2008) Visualizing the Pareto frontier. In: Multiobjective optimization, Lecture Notes in Computer Science, vol 5252, pp 213–243. SpringerGoogle Scholar
  28. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Massachusetts, USAGoogle Scholar
  29. Molina J, Santana L, Hernández-Díaz A, Coello C, Caballero R (2009) g-Dominance: reference point based dominance for multiobjective metaheuristics. Eur J Oper Res 197(2):685–692CrossRefMATHGoogle Scholar
  30. Morino H, Obayashi S (2013) Knowledge extraction for structural design of regional jet horizontal tail using multi-objective design exploration (MODE). In: Purshouse R, Fleming P, Fonseca C, Greco S, Shaw J (eds) Evolutionary multi-criterion optimization: EMO 2013, Lecture Notes in Computer Science, vol 7811, pp 656–668. SpringerGoogle Scholar
  31. Narukawa K (2013) Effect of dominance balance in many-objective optimization. In: Purshouse R, Fleming P, Fonseca C, Greco S, Shaw J (eds) Evolutionary multi-criterion optimization: EMO 2013, Lecture Notes in Computer Science, vol 7811, pp 276–290. SpringerGoogle Scholar
  32. Narukawa K, Rodemann T (2012) Examining the performance of evolutionary many-objective optimization algorithms on a real-world application. In: Proceedings of 2012 IEEE International Conference on Genetic and Evolutionary Computing, pp 316–319. IEEEGoogle Scholar
  33. Narukawa K, Tanigaki Y, Ishibuchi H (2014) Evolutionary many-objective optimization using preference on hyperplane. In: Proceedings of 2014 Genetic and Evolutionary Computation Conference, pp 91–92. ACMGoogle Scholar
  34. Okabe T, Jin Y, Sendhoff B (2003) A critical survey of performance indices for multi-objective optimisation. In: Proc. of 2003 IEEE Congress on Evolutionary Computation, IEEE, vol 2, pp 878–885Google Scholar
  35. Pedro L, Takahashi R (2011) Modeling decision-maker preferences through utility function level sets. In: Takahashi R, Deb K, Wanner E, Greco S (eds) Evolutionary multi-criterion optimization: EMO 2011, Lecture Notes in Computer Science, vol 6576, pp 550–563. SpringerGoogle Scholar
  36. Pedro L, Takahashi, R (2013) Decision-maker preference modeling in interactive multiobjective optimization. In: Purshouse R, Fleming P, Fonseca C, Greco S, Shaw J (eds) evolutionary multi-criterion optimization: EMO 2013, Lecture Notes in Computer Science, vol 7811, pp 811–824. SpringerGoogle Scholar
  37. Rachmawati L, Srinivasan D (2009) Multiobjective evolutionary algorithm with controllable focus on the knees of the pareto front. IEEE Trans Evol Comput 13(4):810–824CrossRefGoogle Scholar
  38. Sato H, Aguirre H, Tanaka K (2007) Controlling dominance area of solutions and its impact on the performance of MOEAs. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) Evolutionary multi-criterion optimization: EMO 2007, Lecture Notes in Computer Science, vol 4403, pp 5–20. SpringerGoogle Scholar
  39. Tanigaki Y, Narukawa K, Nojima Y, Ishibuchi H (2014) Preference-based NSGA-II for many-objective knapsack problems. In: Proceedings of Joint 7th International Conference on Soft Computing and Intelligent Systems and 15th International Symposium on Advanced Intelligent Systems. IEEEGoogle Scholar
  40. Wagner T, Beume N, Naujoks B (2007) Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) evolutionary multi-criterion optimization: EMO 2007, Lecture Notes in Computer Science, vol 4403, pp 742–756. SpringerGoogle Scholar
  41. Wang Y, Yang Y (2009) Particle swarm optimization with preference order ranking for multi-objective optimization. Inf Sci 179(12):1944–1959MathSciNetCrossRefGoogle Scholar
  42. Wickramasinghe U, Li X (2008) Integrating user preferences with particle swarms for multi-objective optimization. In: Proceedings of 2008 Genetic and Evolutionary Computation Conference, pp 745–752. ACMGoogle Scholar
  43. Wickramasinghe U, Li X (2009) A distance metric for evolutionary many-objective optimization algorithms using user-preferences. In: AI 2009: Advances in Artificial Intelligence, pp 443–453. SpringerGoogle Scholar
  44. Wierzbicki A (1982) A mathematical basis for satisficing decision making. Math Model 3(5):391–405MathSciNetCrossRefMATHGoogle Scholar
  45. Woźniak P (2011) Preferences in multi-objective evolutionary optimisation of electric motor speed control with hardware in the loop. Appl Soft Comput 11(1):49–55CrossRefGoogle Scholar
  46. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731CrossRefGoogle Scholar
  47. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Yao X, Burke E, Lozano J, Smith J, Guervós J, Bullinaria J, Rowe J, Tiño P, Kabán A, Schwefel H (eds) Parallel problem solving from nature: PPSN VIII, Lecture Notes in Computer Science, vol 3242, pp 832–842. SpringerGoogle Scholar
  48. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Proc. of Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems, pp 95–100Google Scholar
  49. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271CrossRefGoogle Scholar
  50. Zitzler E, Thiele L, Laumanns M, Fonseca C, Fonseca V (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kaname Narukawa
    • 1
  • Yu Setoguchi
    • 2
  • Yuki Tanigaki
    • 2
  • Markus Olhofer
    • 1
  • Bernhard Sendhoff
    • 1
  • Hisao Ishibuchi
    • 2
  1. 1.Honda Research Institute Europe GmbHOffenbachGermany
  2. 2.Osaka Prefecture UniversitySakaiJapan

Personalised recommendations