Soft Computing

, Volume 19, Issue 2, pp 269–282 | Cite as

The representation of square root quasi-pseudo-MV algebras

  • Wenjuan Chen
  • Wieslaw A. Dudek


\(\sqrt{'}\) quasi-MV algebras arising from quantum computation are term expansions of quasi-MV algebras. In this paper, we introduce a generalization of \(\sqrt{'}\) quasi-MV algebras, called square root quasi-pseudo-MV algebras (\(\sqrt{\hbox {quasi-pMV}}\) algebras, for short). First, we investigate the related properties of \(\sqrt{\hbox {quasi-pMV}}\) algebras and characterize two special types: Cartesian and flat \(\sqrt{\hbox {quasi-pMV}}\) algebras. Second, we present two representations of \(\sqrt{\hbox {quasi-pMV}}\) algebras. Furthermore, we generalize the concepts of PR-groups to non-commutative case and prove that the interval of a non-commutative PR-group with strong order unit is a Cartesian \(\sqrt{\hbox {quasi-pMV}}\) algebra. Finally, we introduce non-commutative PR-groupoids which extend abelian PR-groupoids and show that the category of negation groupoids with operators and the category of non-commutative PR-groupoids are equivalent.


Quasi-MV algebras Quasi-pMV algebras \(\sqrt{\hbox {quasi-pMV}}\) algebras Cartesian \(\sqrt{\hbox {quasi-pMV}}\) algebras PR-groups Representations 



This project is supported by the National Natural Science Foundation of China (Grant No.11126301), Promotive Research Fund for Young and Middle-aged Scientists of Shandong Province (No. BS2011SF002).


  1. Bou F, Paoli F, Ledda A, Freytes H (2008) On some properties of quasi-MV algebras and \(\sqrt{^{\prime }}\)quasi-MV algebras Part II. Soft Comput 12:341–352CrossRefzbMATHGoogle Scholar
  2. Bou F, Paoli F, Ledda A, Spinks M, Giuntini R (2010) The logic of quasi-MV algebras. J Log Comput 20:619–643CrossRefzbMATHMathSciNetGoogle Scholar
  3. Chang CC (1958) Algebraic analysis of many valued logics. Trans Am Math Soc 88:467–490CrossRefzbMATHGoogle Scholar
  4. Chen WJ, Dudek WA (2014) Quantum computational algebra with a non-commutative generalization, Math Slovaca (accepted). Article ID 166Google Scholar
  5. Di Nola A, Georgescu G, Iorgulescu A (2002) Pseudo BL algebras: part I. Multi Val Log 8:673–714zbMATHMathSciNetGoogle Scholar
  6. Freytes H, Ledda A (2009) Categories of semigroups in quantum computational structures. Math Slovaca 59:413–432CrossRefzbMATHMathSciNetGoogle Scholar
  7. Georgescu G, Iorgulescu A (2001) Pseudo MV algebras. Mult Val Log 6:95–135zbMATHMathSciNetGoogle Scholar
  8. Giuntini R, Ledda A, Paoli F (2007) Expanding quasi-MV algebras by a quantum operator. Stud Log 87:99–128CrossRefzbMATHMathSciNetGoogle Scholar
  9. Giuntini R, Paoli F, Ledda A (2010) Categorical equivalences for \(\sqrt{^{\prime }}\) quasi-MV algebras. J Log Comput 20:795–810CrossRefzbMATHMathSciNetGoogle Scholar
  10. Jipsen P, Ledda A, Panli F (2013) On some properties of quasi-MV algebras and \(\sqrt{^{\prime }}\) quasi-MV algebras. Part IV. Rep Math Log 48:3–36zbMATHGoogle Scholar
  11. Kowalski T, Paoli F (2010) On some properties of quasi-MV algebras and \(\sqrt{^{\prime }}\)quasi-MV algebras. Part III. Rep Math Log 45:161–199zbMATHMathSciNetGoogle Scholar
  12. Kowalski T, Paoli F (2011) Joins and subdirect products of varieties. Algebra Univers 65:371–391CrossRefzbMATHMathSciNetGoogle Scholar
  13. Kowalski T, Paoli F, Giuntini R, Ledda A (2010) The lattice of subvarieties of square root quasi-MV algebras. Stud Log 95:37–61CrossRefzbMATHMathSciNetGoogle Scholar
  14. Kowalski T, Paoli F, Spinks M (2011) Quasi-subtractive varieties. J Symb Log 76:1261–1286CrossRefzbMATHMathSciNetGoogle Scholar
  15. Ledda A, Konig M, Paoli F, Giuntini R (2006) MV algebras and quantum computation. Stud Log 82:245–270CrossRefzbMATHMathSciNetGoogle Scholar
  16. Mundici D (1986) Interpretation of AF C\(^{*}\)-algebra in Łukasiewicz sentential calculus. J Funct Anal 65:15–63CrossRefzbMATHMathSciNetGoogle Scholar
  17. Paoli F, Ledda A, Giuntini R, Freytes H (2009) On some properties of quasi-MV algebras and \(\sqrt{^{\prime }}\)quasi-MV algebras. Part I. Rep Math Log 44:31–63zbMATHMathSciNetGoogle Scholar
  18. Paoli F, Ledda A, Spinks M, Freytes H, Giuntini R (2011) Logics from \(\sqrt{^{\prime }}\) quasi-MV algebras. Intern J Theor Phys 50:3882–3902CrossRefzbMATHMathSciNetGoogle Scholar
  19. Rachunek J (2002) A non-commutative generalization of MV algebras. Czechoslov Math J 52(127):255–273CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of JinanJinanP.R. China
  2. 2.Institute of Mathematics and Computer ScienceWrocław University of TechnologyWrocławPoland

Personalised recommendations