Advertisement

Soft Computing

, Volume 19, Issue 4, pp 1099–1106 | Cite as

Random-key cuckoo search for the travelling salesman problem

  • Aziz OuaarabEmail author
  • Belaïd Ahiod
  • Xin-She Yang
Methodologies and Application

Abstract

Combinatorial optimization problems are typically NP-hard, and thus very challenging to solve. In this paper, we present the random-key cuckoo search (RKCS) algorithm for solving the famous travelling salesman problem (TSP). We used a simplified random-key encoding scheme to pass from a continuous space (real numbers) to a combinatorial space. We also consider the displacement of a solution in both spaces using Lévy flights. The performance of the proposed RKCS is tested against a set of benchmarks of symmetric TSP from the well-known TSPLIB library. The results of the tests show that RKCS is superior to some other metaheuristic algorithms.

Keywords

Nature-inspired metaheuristic Cuckoo search Lévy flights Random key Combinatorial optimization  Travelling salesman problem 

References

  1. Bean J (1994) Genetic algorithms and random keys for sequencing and optimization. ORSA J Comput 6:154–154CrossRefzbMATHGoogle Scholar
  2. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308CrossRefGoogle Scholar
  3. Brown CT, Liebovitch LS, Glendon R (2007) Lévy flights in Dobe Ju/’hoansi foraging patterns. Hum Ecol 35(1):129–138CrossRefGoogle Scholar
  4. Chen H, Li S, Tang Z (2011) Hybrid gravitational search algorithm with random-key encoding scheme combined with simulated annealing. Int J Comput Sci Netw Secur 11:208–217zbMATHGoogle Scholar
  5. Cirasella J, Johnson DS, McGeoch LA, Zhang W (2001) The asymmetric traveling salesman problem: algorithms, instance generators, and tests. In: Algorithm engineering and experimentation. Springer, Berlin, pp 32–59Google Scholar
  6. Croes G (1958) A method for solving traveling-salesman problems. Oper Res 6(6):791–812CrossRefMathSciNetGoogle Scholar
  7. Davendra D (2010) Traveling salesman problem, theory and applications. InTechGoogle Scholar
  8. Gutin G, Punnen AP (2002) The traveling salesman problem and its variations, vol 12. Springer, BerlinzbMATHGoogle Scholar
  9. Hochbaum DS (1996) Approximation algorithms for NP-hard problems. PWS Publishing Co., BostonzbMATHGoogle Scholar
  10. Lawler EL, Lenstra JK, Kan AR, Shmoys DB (1985) The traveling salesman problem: a guided tour of combinatorial optimization, vol 3. Wiley, ChichesterzbMATHGoogle Scholar
  11. Lenstra JK, Kan AR (1975) Some simple applications of the travelling salesman problem. J Oper Res Soc 26(4):717–733Google Scholar
  12. Mohamad A, Zain AM, Bazin NEN, Udin A (2013) Cuckoo search algorithm for optimization problems—a literature review. Appl Mech Mater 421:502–506CrossRefGoogle Scholar
  13. Mohamad A, Zain AM, Bazin NEN, Udin A (2013), A process prediction model based on cuckoo algorithm for abrasive waterjet machining. J Intell Manuf. doi: 10.1007/s10845-013-0853-8
  14. Ouaarab A, Ahiod B, Yang XS (2014) Improved and discrete cuckoo search for solving the travelling salesman problem. In: Cuckoo search and firefly algorithm. Springer, Berlin, pp 63–84Google Scholar
  15. Ouyang X, Zhou Y, Luo Q, Chen H (2013) A novel discrete cuckoo search algorithm for spherical traveling salesman problem. Appl Math 7(2):777–784Google Scholar
  16. Payne RB (2005) The cuckoos, vol 15. Oxford University Press, OxfordGoogle Scholar
  17. Reinelt G (1994) The traveling salesman: computational solutions for TSP applications. Springer, BerlinGoogle Scholar
  18. Reinelt G (1995) Tsplib95. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), HeidelbergGoogle Scholar
  19. Samanlioglu F, Kurz MB, Ferrell WG, Tangudu S (2007) A hybrid random-key genetic algorithm for a symmetric travelling salesman problem. Int J Oper Res 2(1):47–63 Google Scholar
  20. Shlesinger MF, Zaslavsky GM, Frisch U (1995) Lévy flights and related topics in physics. In: Levy flights and related topics in physics, vol 450Google Scholar
  21. Snyder LV, Daskin MS (2006) A random-key genetic algorithm for the generalized traveling salesman problem. Eur J Oper Res 174(1):38–53CrossRefzbMATHMathSciNetGoogle Scholar
  22. Yang XS (2010) Engineering Optimization: an introduction with metaheuristic applications. Wiley, USACrossRefGoogle Scholar
  23. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, UKGoogle Scholar
  24. Yang XS (2013) Cuckoo search and firefly algorithm: theory and applications. Springer, BerlinGoogle Scholar
  25. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: World Congress on Nature and biologically inspired computing, 2009. NaBIC 2009, pp 210–214. IEEEGoogle Scholar
  26. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1(4):330–343zbMATHGoogle Scholar
  27. Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40:1616–1624CrossRefMathSciNetGoogle Scholar
  28. Yang XS, Deb S, Loomes M, Karamanoglu M (2013) A framework for self-tuning optimization algorithms. Neural Comput Appl 23:2051–2057CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LRIT, Associated Unit to the CNRST (URAC) No 29Mohammed V-Agdal UniversityRabatMorocco
  2. 2.School of Science and TechnologyMiddlesex UniversityLondonUK

Personalised recommendations