Advertisement

Soft Computing

, Volume 19, Issue 1, pp 133–144 | Cite as

Motion retrieval using weighted graph matching

  • Qinkun Xiao
  • Yi WangEmail author
  • Haiyun Wang
Methodologies and Application

Abstract

In this paper, we propose a content-based motion retrieval (CBMR) algorithm, where many-to-many matching method, weighted graph matching, is employed for comparison between two motions. Our novel points can be described as: (1) A selection approach of representative frames (RF) is presented, in this work, each motion is represented by a set of sequence frames, representative frames are first selected from the motions based on Fuzzy clustering and the corresponding initial weights are provided. (2) The RF-based weighted graph model (RF-WGM) is constructed, and a revised KM (Kuhn–Munkres) algorithm is used to solve maximum matching problem of weighted graph. The RF-WGM matching result is used to measure the similarity between two motions. Experimental results and comparison with existing methods show the effectiveness of the proposed algorithm.

Keywords

CBMR RF-WGM Revised KM algorithm 

Notes

Acknowledgments

This work was supported by NSFC (No. 60972095, 61271362), Shanxi Province Natural Science Foundation (No. 2012JM8028) and Shanxi Province Education Department Specialized Research Foundation (No. 12JK0510, 12JK0727).

References

  1. Baak A, Müller M, Seidel H-P (2008) An Efficient algorithm for keyframe-based motion retrieval in the presence of temporal deformations. ACM Conference on Multimedia Information Retrieval pp 451–458Google Scholar
  2. Chakrabarti K, Keogh E, Mehrotra S, Pazzani M (2002) Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans Database Syst 27(2):188–228CrossRefGoogle Scholar
  3. Chen C, Yang Y, Nie F, Odobez JM (2011) 3D human pose recovery from image by efficient visual feature selection. Comput Vis Image Underst 115(3):290–299CrossRefGoogle Scholar
  4. Chen C, Zhuang Y, Nie F (2011) Learning a 3D human pose distance metric from geometric pose descriptor. IEEE Trans Vis Comput Graph 17(11):1676–1689CrossRefGoogle Scholar
  5. Gao Y, Dai Q, Wang M, Zhang N (2011) 3D model retrieval using weighted bipartite graph matching. Signal Process Image Commun 26(1):39–47CrossRefGoogle Scholar
  6. Gao Y, Wang M, Zha Z-J, Tian Q, Dai Q, Zhang N (2011) Less is more: efficient 3-D object retrieval with query view selection. IEEE Trans Multimed 13(5):1007–1018CrossRefGoogle Scholar
  7. Gao Y, Tang J, Hong R, Yan S, Dai Q, Zhang N, Chua T-S (2012) Camera constraint-free view-based 3-D object retrieval. IEEE Trans Image Process 21(4):2269–2281CrossRefMathSciNetGoogle Scholar
  8. Graphics Lab, “Motion Capture Database”, Carnegie Mellon University. http://mocap.cs.cmu.edu/
  9. Gross JL, Yellen J (2011) Graph theory and its applications. 2nd edn. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  10. Keogh E, Palpanas T, Zordan V, Gunopulos D, Cardle M (2004) ‘Indexing large human-motion databases. Proc VLDB pp 780–791Google Scholar
  11. Kovar L, Gleicher M (2004) Automated extraction and parameterization of motions in large data sets. ACM Trans Graph 23(3):559–568CrossRefGoogle Scholar
  12. Kovar L, Gleicher M, Pighin F (2002) Motion Graphs. Proc ACM SIGGRAPH pp 473–482Google Scholar
  13. Krüger B, Tautges J, Weber A, Zinke A (2010) Fast local and global similarity searches in large motion capture databases. Eurographics/ACM SIGGRAPH Symposium on Computer, AnimationGoogle Scholar
  14. Lin Y (2006) Efficient human motion retrieval in large databases. Proc ACM GRAPHITE pp 31–37Google Scholar
  15. Ma Z, Nie F, Yang Y, Uijlings J, Sebe N, Hauptmann AG (2012) Discriminating joint feature analysis for multimedia data understanding. IEEE Trans Multimed 14(6):1662–1672CrossRefGoogle Scholar
  16. Müller M, Röder T, Clausen M (2005) Efficient content-based retrieval of motion capture data. ACM Trans Graph 24(3):677–685CrossRefGoogle Scholar
  17. Müller M, Röder T (2006) Motion templates for automatic classification and retrieval of motion capture data. Eurographics/ACM SIGGRAPH Symposium on Computer, AnimationGoogle Scholar
  18. Müller M, Röder T (2006) Motion templates for automatic classification and retrieval of motion capture data. Proc ACM SCAGoogle Scholar
  19. Tam TAM, Lau RWH (2007) Deformable model retrieval based on topological and geometric signatures. IEEE Trans Vis Comput Graph 13(3):470–482CrossRefMathSciNetGoogle Scholar
  20. Tian JW, Qi WH, Liu XX (2011) Retrieving deep web data through multi-attributes interfaces with structured queries. Int J Softw Eng Knowl Eng 21(4):523–542CrossRefGoogle Scholar
  21. Xiao Q, Wang H, Li F, Gao Y (2011) 3D object retrieval based on a graph model descriptor. Neurocomputing 74(17):2340–2348Google Scholar
  22. Xiao Q, Luo Y, Gao S (2012) Human motion retrieval with symbolic aggregate approximation. In: Proceedings of the Chinese Control and Decision Conference, pp 3632–3636Google Scholar
  23. Yang Y, Zhuang Y, Pan Y (2008) Harmonizing hierarchical manifolds for multimedia document semantics understanding and cross-media retrieval. IEEE Trans Multimed 10(3):437–446CrossRefGoogle Scholar
  24. Yang Y, Nie F, Xu D, Luo J, Zhuang Y, Pan Y (2012) A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans Pattern Anal Mach Intell 34(4):723–742 Google Scholar
  25. Zhang WF, Zhou YM, Xu L, Xu BW (2010) A method of detecting web pages based on Hungarian matching algorithm. Chin J Comput 33(10):1963–1975CrossRefGoogle Scholar
  26. Zhang Z, Tao D (2012) Slow feature analysis for human action recognition. IEEE Trans Pattern Anal Mach Intell 34(3):436–450CrossRefMathSciNetGoogle Scholar
  27. Zhou F, De La Torre F (2012) Factorized graph matching. IEEE Comput Soc Conf Comput Vis Pattern Recognit pp 127–134Google Scholar
  28. Zhou F, De La Torre F (2013) Deformable graph matching. IEEE Comput Soc Conf Comput Vis Pattern Recognit pp 2922–2929.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Electronics Information EngineeringXi’an Technological UniversityXi’an China
  2. 2.STMicroelectronics R&D of Asia-PacificSingapore Singapore

Personalised recommendations