Skip to main content
Log in

A cooperative group optimization system

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A cooperative group optimization (CGO) system is presented to implement CGO cases by integrating the advantages of the cooperative group and low-level algorithm portfolio design. Following the nature-inspired paradigm of a cooperative group, the agents not only explore in a parallel way with their individual memory, but also cooperate with their peers through the group memory. Each agent holds a portfolio of (heterogeneous) embedded search heuristics (ESHs), in which each ESH can drive the group into a stand-alone CGO case, and hybrid CGO cases in an algorithmic space can be defined by low-level cooperative search among a portfolio of ESHs through customized memory sharing. The optimization process might also be facilitated by a passive group leader through encoding knowledge in the search landscape. Based on a concrete framework, CGO cases are defined by a script assembling over instances of algorithmic components in a toolbox. A multilayer design of the script, with the support of the inherent updatable graph in the memory protocol, enables a simple way to address the challenge of accumulating heterogeneous ESHs and defining customized portfolios without any additional code. The CGO system is implemented for solving the constrained optimization problem with some generic components and only a few domain-specific components. Guided by the insights from algorithm portfolio design, customized CGO cases based on basic search operators can achieve competitive performance over existing algorithms as compared on a set of commonly-used benchmark instances. This work might provide a basic step toward a user-oriented development framework, since the algorithmic space might be easily evolved by accumulating competent ESHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that the same symbol no longer means a general type if it appears at other places. Taking “M S ” as an example (“M” is its general type), “S” means a key variant rather than the general type of a space of states.

References

  • Anderson JR (2005) Human symbol manipulation within an integrated cognitive architecture. Cognit Sci 29(3):313–341

    Article  Google Scholar 

  • Barkat Ullah ASSM, Sarker R, Cornforth D, Lokan C (2009) AMA: a new approach for solving constrained real-valued optimization problems. Soft Comput 13(8-9):741–762

    Article  Google Scholar 

  • Becerra RL, Coello CAC (2006) Cultured differential evolution for constrained optimization. Comput Methods Appl Mech Eng 195(33–36):4303–4322

    Article  MATH  Google Scholar 

  • Beyer HG (2001) On the performance of (1, λ)-evolution strategies for the ridge function class. IEEE Trans Evol Comput 5(3):218–235

    Article  Google Scholar 

  • Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: Genetic and evolutionary computation conference. Morgan Kaufmann, New York, pp 11–18

  • Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11:4135–4151

    Article  Google Scholar 

  • Boyd R, Richerson PJ, Henrich J (2011) The cultural niche: Why social learning is essential for human adaptation. Proc Natl Acad Sci 108:10918–10925

    Article  Google Scholar 

  • Cahon S, Melab N, Talbi EG (2004) ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. J Heurist 10:357–380

    Article  Google Scholar 

  • Chen X, Ong YS, Lim MH, Tan KC (2012) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607

    Article  Google Scholar 

  • Curran D, O’Riordan C (2006) Increasing population diversity through cultural learning. Adapt Behav 14(4):315–338

    Article  Google Scholar 

  • Danchin É, Giraldeau LA, Valone T, Wagner R (2004) Public information: from nosy neighbors to cultural evolution. Science 305(5683):487–491

    Google Scholar 

  • Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    Article  MATH  Google Scholar 

  • Dennis A, Valacich J (1993) Computer brainstorms: more heads are better than one. J Appl Psychol 78(4):531–537

    Article  Google Scholar 

  • Edgington T, Choi B, Henson K, Raghu T, Vinze A (2004) Adopting ontology to facilitate knowledge sharing. Communi ACM 47(11):85–90

    Article  Google Scholar 

  • Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

    Article  Google Scholar 

  • Elsayed S, Sarker RA, Essam DL (2011) Multi-operator based evolutionary algorithms for solving constrained optimization problems. Comput Oper Res 38:1877–1896

    Google Scholar 

  • Elsayed S, Sarker RA, Essam DL (2012) On an evolutionary approach for constrained optimization problem solving,. Appl Soft Comput 12(10):3208–3227

    Article  Google Scholar 

  • Elsayed S, Sarker RA, Essam DL (2013) An improved self-adaptive differential evolution algorithm for optimization problems. IEEE Trans Ind Inf 9(1):89–99

    Google Scholar 

  • Ericsson KA, Kintsch W (1995) Long-term working memory. Psychol Rev 102(2):211–245

    Article  Google Scholar 

  • Farmani R, Wright J (2003) Self-adaptive fitness formulation for constrained optimization. IEEE Trans Evol Comput 7(5):445–455

    Article  Google Scholar 

  • Galef BG (1995) Why behaviour patterns that animals learn socially are locally adaptive. Anim Behav 49(5):1325–1334

    Article  Google Scholar 

  • Gigerenzer G, Selten R (2001) Bounded rationality: the adaptive toolbox. MIT Press, Cambridge

  • Glenberg AM (1997) What memory is for. Behav Brain Sci 20(1):1–55

    Google Scholar 

  • Goncalo JA, Staw BM (2006) Individualism–collectivism and group creativity. Org Behav Human Decis Process 100:96–109

    Article  Google Scholar 

  • Hamida SB, Schoenauer M (2002) ASCHEA: new results using adaptive segregational constraint handling. In: Congress on evolutionary computation. IEEE, Honolulu, pp 884–889

  • He S, Wu Q, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(5):973–990

    Article  Google Scholar 

  • Hinton GE, Nowlan SJ (1987) How learning can guide evolution. Complex Syst 1:495–502

    Google Scholar 

  • Hoos HH, Stutzle T (2004) Stochastic local search: foundations and applications. Elsevier, Burlington

  • Huberman BA, Lukose RM, Hogg T (1997) An economics approach to hard computational problems. Science 275(5296):51–54

    Article  Google Scholar 

  • Jin Y, Olhofer M, Sendhoff B (2002) A framework for evolutionary optimization with approximate fitness functions. IEEE Trans Evol Comput 6(5):481–494

    Article  Google Scholar 

  • Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San Mateo

  • Kohn NW, Smith SM (2011) Collaborative fixation: effects of others’ ideas on brainstorming. Appl Cognit Psychol 25(3):359–371

    Article  Google Scholar 

  • Laland KN (2004) Social learning strategies. Learn Behav 32(1):4–14

    Article  Google Scholar 

  • Lau HC, Wan WC, Halim S, Toh K (2007) A software framework for fast prototyping of meta-heuristics hybridization. Int Trans Oper Res 14(2):123–141

    Article  MATH  Google Scholar 

  • Leonard NE, Shen T, Nabet B, Scardovi L, Couzin ID, Levin SA (2012) Decision versus compromise for animal groups in motion. Proc Natl Acad Sci 109(1):227–232

    Article  Google Scholar 

  • Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello CAC, Deb K (2006) Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. Tech. rep., Nanyang Technological University, Singapore

  • Liu J, Han J, Tang YY (2002) Multi-agent oriented constraint satisfaction. Artif Intell 136(1):101–144

    Article  MATH  MathSciNet  Google Scholar 

  • Liu J, Tsui KC (2006) Toward nature-inspired computing. Commun ACM 49(10):59–64

    Article  Google Scholar 

  • Liu J, Zhong W, Hao L (2007) An organizational evolutionary algorithm for numerical optimization. IEEE Trans Syst Man Cybern Part B 37(4):1052–1064

    Article  Google Scholar 

  • Lu H, Chen W (2008) Self-adaptive velocity particle swarm optimization for solving constrained optimization problems. J Global Optim 41(3):427–445

    Article  MATH  MathSciNet  Google Scholar 

  • Mallipeddi R, Mallipeddi S, Suganthan PN (2010a) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  • Mallipeddi R, Mallipeddi S, Suganthan PN (2010b) Ensemble strategies with adaptive evolutionary programming. Inf Sci 180(2):1571–1581

    Article  Google Scholar 

  • Mallipeddi R, Suganthan PN (2010) Ensemble of constraint handling techniques. IEEE Trans Evol Comput 14(4):561–579

    Article  Google Scholar 

  • Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9(1):1–17

    Article  Google Scholar 

  • Milano M, Poli A (2004) MAGMA: a multiagent architecture for metaheuristics. IEEE Trans Syst Man Cybern Part B 34(2):925–941

    Article  Google Scholar 

  • Nemeth CJ (1986) Differential contributions of majority and minority influence. Psychol Rev 93(1):23–32

    Article  Google Scholar 

  • Omran MGH, Engelbrecht AP (2009) Free search differential evolution. In: IEEE congress on evolutionary computation. IEEE, Trondheim, pp 110–117

  • Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B: Cybern 36(1):141–152

    Article  Google Scholar 

  • Parejo JA, Ruiz-Cortes A, Lozano S, Fernandez P (2012) Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput 16(3):527–561

    Article  Google Scholar 

  • Paulus PB (2000) Groups, teams, and creativity: the creative potential of idea-generating groups. Appl Psychol 49(2):237–262

    Article  MathSciNet  Google Scholar 

  • Platon E, Mamei M, Sabouret N, Honiden S, Van Parunak H (2007) Mechanisms for environments in multi-agent systems: survey and opportunities. Auton Agents Multi Agent SystAgents and Multi-Agent Systems 14(1):31–47

    Article  Google Scholar 

  • Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer, NY

  • Raidl GR (2006) A unified view on hybrid metaheuristics. In: International conference on hybrid metaheuristics. Gran Canaria, pp 1–12

  • Reynolds RG, Peng B, Ali MZ (2008) The role of culture in the emergence of decision-making roles: an example using cultural algorithms. Complexity 13(3):27–42

    Article  Google Scholar 

  • Runarsson TP, Yao X (2005) Search biases in constrained evolutionary optimization. IEEE Trans Syst Man Cybern Part C 35(2):233–243

    Article  Google Scholar 

  • Salomon R (1996) Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39(3):263–278

    Article  Google Scholar 

  • Satzinger JW, Garfield MJ, Nagasundaram M (1999) The creative process: the effects of group memory on individual idea generation. J Manage Inf Syst 15(4):143–160

    Google Scholar 

  • Smith-Miles K (2008) Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput Surv 41(6), Art. No. 6

  • Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3):1155–1173

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler PF, Happel R (1999) Random field models for fitness landscapes. J Math Biol 38(5):435–478

    Article  MATH  MathSciNet  Google Scholar 

  • Streeter M, Smith SF (2008) New techniques for algorithm portfolio design. In: Conference in Uncertainty in Artificial Intelligence, pp. 519–527. AUAI, Helsinki, Finland

  • Taillard ED, Gambardella LM, Gendreau M, Potvin JY (2001) Adaptive memory programming: a unified view of metaheuristics. Eur J Oper Res 135(1):1–16

    Article  MATH  MathSciNet  Google Scholar 

  • Takahama T, Sakai S (2005) Constrained optimization by applying the alpha constrained method to the nonlinear simplex method with mutations. IEEE Trans Evol Comput 9(5):437–451

    Article  Google Scholar 

  • Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heurist 8(5):541–564

    Article  Google Scholar 

  • Tomasello M, Kruger A, Ratner H (1993) Cultural learning. Behav Brain Sci 16(3):495–511

    Article  Google Scholar 

  • Ventura S, Romero C, Zafra A, Delgado JA, Hervas C (2008) JCLEC: a Java framework for evolutionary computation. Soft Comput 12(4):381–392

    Article  Google Scholar 

  • Vrugt JA, Robinson BA, Hyman JM (2009) Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Trans Evol Comput 13(2):243–259

    Article  Google Scholar 

  • Wagner S (2009) Heuristic optimization software systems—modeling of heuristic optimization algorithms in the heuristiclab software environment. Phd thesis, Johannes Kepler University, Linz

  • Wang Y, Cai Z, Zhou Y, Zeng W (2008) An adaptive tradeoff model for constrained evolutionary optimization. IEEE Trans Evol Comput 12(1):80–92

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Woolley AW, Chabris CF, Pentland A, Hashmi N, Malone TW (2010) Evidence for a collective intelligence factor in the performance of human groups. Science 330(6004):686–688

    Google Scholar 

  • Xie XF, Liu J (2005) A compact multiagent system based on autonomy oriented computing. In: IEEE/WIC/ACM international conference on intelligent agent technology. IEEE, Compiegne, pp 38–44

  • Xie XF, Liu J (2009) Multiagent optimization system for solving the traveling salesman problem (TSP). IEEE Trans Syst Man Cybern Part B Cybern 39(2):489–502

    Article  Google Scholar 

  • Xie XF, Zhang WJ (2004) SWAF: swarm algorithm framework for numerical optimization. In: Genetic and evolutionary computation conference (GECCO). Springer, Seattle, pp 238–250

  • Xie XF, Zhang WJ, Yang ZL (2002) Social cognitive optimization for nonlinear programming problems. In: International conference on machine learning and cybernetics. IEEE, Beijing, pp 779–783

  • Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  • Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: IEEE international conference on systems, man, and cybernetics. IEEE, Washington, DC, pp 3816–3821

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Feng Xie.

Additional information

Communicated by Y.-S. Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, XF., Liu, J. & Wang, ZJ. A cooperative group optimization system. Soft Comput 18, 469–495 (2014). https://doi.org/10.1007/s00500-013-1069-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1069-8

Keywords

Navigation