Soft Computing

, Volume 18, Issue 3, pp 469–495 | Cite as

A cooperative group optimization system

Methodologies and Application

Abstract

A cooperative group optimization (CGO) system is presented to implement CGO cases by integrating the advantages of the cooperative group and low-level algorithm portfolio design. Following the nature-inspired paradigm of a cooperative group, the agents not only explore in a parallel way with their individual memory, but also cooperate with their peers through the group memory. Each agent holds a portfolio of (heterogeneous) embedded search heuristics (ESHs), in which each ESH can drive the group into a stand-alone CGO case, and hybrid CGO cases in an algorithmic space can be defined by low-level cooperative search among a portfolio of ESHs through customized memory sharing. The optimization process might also be facilitated by a passive group leader through encoding knowledge in the search landscape. Based on a concrete framework, CGO cases are defined by a script assembling over instances of algorithmic components in a toolbox. A multilayer design of the script, with the support of the inherent updatable graph in the memory protocol, enables a simple way to address the challenge of accumulating heterogeneous ESHs and defining customized portfolios without any additional code. The CGO system is implemented for solving the constrained optimization problem with some generic components and only a few domain-specific components. Guided by the insights from algorithm portfolio design, customized CGO cases based on basic search operators can achieve competitive performance over existing algorithms as compared on a set of commonly-used benchmark instances. This work might provide a basic step toward a user-oriented development framework, since the algorithmic space might be easily evolved by accumulating competent ESHs.

References

  1. Anderson JR (2005) Human symbol manipulation within an integrated cognitive architecture. Cognit Sci 29(3):313–341CrossRefGoogle Scholar
  2. Barkat Ullah ASSM, Sarker R, Cornforth D, Lokan C (2009) AMA: a new approach for solving constrained real-valued optimization problems. Soft Comput 13(8-9):741–762CrossRefGoogle Scholar
  3. Becerra RL, Coello CAC (2006) Cultured differential evolution for constrained optimization. Comput Methods Appl Mech Eng 195(33–36):4303–4322MATHCrossRefGoogle Scholar
  4. Beyer HG (2001) On the performance of (1, λ)-evolution strategies for the ridge function class. IEEE Trans Evol Comput 5(3):218–235CrossRefGoogle Scholar
  5. Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: Genetic and evolutionary computation conference. Morgan Kaufmann, New York, pp 11–18Google Scholar
  6. Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11:4135–4151CrossRefGoogle Scholar
  7. Boyd R, Richerson PJ, Henrich J (2011) The cultural niche: Why social learning is essential for human adaptation. Proc Natl Acad Sci 108:10918–10925CrossRefGoogle Scholar
  8. Cahon S, Melab N, Talbi EG (2004) ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. J Heurist 10:357–380CrossRefGoogle Scholar
  9. Chen X, Ong YS, Lim MH, Tan KC (2012) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607CrossRefGoogle Scholar
  10. Curran D, O’Riordan C (2006) Increasing population diversity through cultural learning. Adapt Behav 14(4):315–338CrossRefGoogle Scholar
  11. Danchin É, Giraldeau LA, Valone T, Wagner R (2004) Public information: from nosy neighbors to cultural evolution. Science 305(5683):487–491Google Scholar
  12. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338MATHCrossRefGoogle Scholar
  13. Dennis A, Valacich J (1993) Computer brainstorms: more heads are better than one. J Appl Psychol 78(4):531–537CrossRefGoogle Scholar
  14. Edgington T, Choi B, Henson K, Raghu T, Vinze A (2004) Adopting ontology to facilitate knowledge sharing. Communi ACM 47(11):85–90CrossRefGoogle Scholar
  15. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141CrossRefGoogle Scholar
  16. Elsayed S, Sarker RA, Essam DL (2011) Multi-operator based evolutionary algorithms for solving constrained optimization problems. Comput Oper Res 38:1877–1896Google Scholar
  17. Elsayed S, Sarker RA, Essam DL (2012) On an evolutionary approach for constrained optimization problem solving,. Appl Soft Comput 12(10):3208–3227CrossRefGoogle Scholar
  18. Elsayed S, Sarker RA, Essam DL (2013) An improved self-adaptive differential evolution algorithm for optimization problems. IEEE Trans Ind Inf 9(1):89–99Google Scholar
  19. Ericsson KA, Kintsch W (1995) Long-term working memory. Psychol Rev 102(2):211–245CrossRefGoogle Scholar
  20. Farmani R, Wright J (2003) Self-adaptive fitness formulation for constrained optimization. IEEE Trans Evol Comput 7(5):445–455CrossRefGoogle Scholar
  21. Galef BG (1995) Why behaviour patterns that animals learn socially are locally adaptive. Anim Behav 49(5):1325–1334CrossRefGoogle Scholar
  22. Gigerenzer G, Selten R (2001) Bounded rationality: the adaptive toolbox. MIT Press, CambridgeGoogle Scholar
  23. Glenberg AM (1997) What memory is for. Behav Brain Sci 20(1):1–55Google Scholar
  24. Goncalo JA, Staw BM (2006) Individualism–collectivism and group creativity. Org Behav Human Decis Process 100:96–109CrossRefGoogle Scholar
  25. Hamida SB, Schoenauer M (2002) ASCHEA: new results using adaptive segregational constraint handling. In: Congress on evolutionary computation. IEEE, Honolulu, pp 884–889Google Scholar
  26. He S, Wu Q, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(5):973–990CrossRefGoogle Scholar
  27. Hinton GE, Nowlan SJ (1987) How learning can guide evolution. Complex Syst 1:495–502Google Scholar
  28. Hoos HH, Stutzle T (2004) Stochastic local search: foundations and applications. Elsevier, BurlingtonGoogle Scholar
  29. Huberman BA, Lukose RM, Hogg T (1997) An economics approach to hard computational problems. Science 275(5296):51–54CrossRefGoogle Scholar
  30. Jin Y, Olhofer M, Sendhoff B (2002) A framework for evolutionary optimization with approximate fitness functions. IEEE Trans Evol Comput 6(5):481–494CrossRefGoogle Scholar
  31. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San MateoGoogle Scholar
  32. Kohn NW, Smith SM (2011) Collaborative fixation: effects of others’ ideas on brainstorming. Appl Cognit Psychol 25(3):359–371CrossRefGoogle Scholar
  33. Laland KN (2004) Social learning strategies. Learn Behav 32(1):4–14CrossRefGoogle Scholar
  34. Lau HC, Wan WC, Halim S, Toh K (2007) A software framework for fast prototyping of meta-heuristics hybridization. Int Trans Oper Res 14(2):123–141MATHCrossRefGoogle Scholar
  35. Leonard NE, Shen T, Nabet B, Scardovi L, Couzin ID, Levin SA (2012) Decision versus compromise for animal groups in motion. Proc Natl Acad Sci 109(1):227–232CrossRefGoogle Scholar
  36. Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello CAC, Deb K (2006) Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. Tech. rep., Nanyang Technological University, SingaporeGoogle Scholar
  37. Liu J, Han J, Tang YY (2002) Multi-agent oriented constraint satisfaction. Artif Intell 136(1):101–144MATHMathSciNetCrossRefGoogle Scholar
  38. Liu J, Tsui KC (2006) Toward nature-inspired computing. Commun ACM 49(10):59–64CrossRefGoogle Scholar
  39. Liu J, Zhong W, Hao L (2007) An organizational evolutionary algorithm for numerical optimization. IEEE Trans Syst Man Cybern Part B 37(4):1052–1064CrossRefGoogle Scholar
  40. Lu H, Chen W (2008) Self-adaptive velocity particle swarm optimization for solving constrained optimization problems. J Global Optim 41(3):427–445MATHMathSciNetCrossRefGoogle Scholar
  41. Mallipeddi R, Mallipeddi S, Suganthan PN (2010a) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696CrossRefGoogle Scholar
  42. Mallipeddi R, Mallipeddi S, Suganthan PN (2010b) Ensemble strategies with adaptive evolutionary programming. Inf Sci 180(2):1571–1581CrossRefGoogle Scholar
  43. Mallipeddi R, Suganthan PN (2010) Ensemble of constraint handling techniques. IEEE Trans Evol Comput 14(4):561–579CrossRefGoogle Scholar
  44. Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9(1):1–17CrossRefGoogle Scholar
  45. Milano M, Poli A (2004) MAGMA: a multiagent architecture for metaheuristics. IEEE Trans Syst Man Cybern Part B 34(2):925–941CrossRefGoogle Scholar
  46. Nemeth CJ (1986) Differential contributions of majority and minority influence. Psychol Rev 93(1):23–32CrossRefGoogle Scholar
  47. Omran MGH, Engelbrecht AP (2009) Free search differential evolution. In: IEEE congress on evolutionary computation. IEEE, Trondheim, pp 110–117Google Scholar
  48. Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B: Cybern 36(1):141–152CrossRefGoogle Scholar
  49. Parejo JA, Ruiz-Cortes A, Lozano S, Fernandez P (2012) Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput 16(3):527–561CrossRefGoogle Scholar
  50. Paulus PB (2000) Groups, teams, and creativity: the creative potential of idea-generating groups. Appl Psychol 49(2):237–262MathSciNetCrossRefGoogle Scholar
  51. Platon E, Mamei M, Sabouret N, Honiden S, Van Parunak H (2007) Mechanisms for environments in multi-agent systems: survey and opportunities. Auton Agents Multi Agent SystAgents and Multi-Agent Systems 14(1):31–47CrossRefGoogle Scholar
  52. Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer, NYGoogle Scholar
  53. Raidl GR (2006) A unified view on hybrid metaheuristics. In: International conference on hybrid metaheuristics. Gran Canaria, pp 1–12Google Scholar
  54. Reynolds RG, Peng B, Ali MZ (2008) The role of culture in the emergence of decision-making roles: an example using cultural algorithms. Complexity 13(3):27–42CrossRefGoogle Scholar
  55. Runarsson TP, Yao X (2005) Search biases in constrained evolutionary optimization. IEEE Trans Syst Man Cybern Part C 35(2):233–243CrossRefGoogle Scholar
  56. Salomon R (1996) Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39(3):263–278CrossRefGoogle Scholar
  57. Satzinger JW, Garfield MJ, Nagasundaram M (1999) The creative process: the effects of group memory on individual idea generation. J Manage Inf Syst 15(4):143–160Google Scholar
  58. Smith-Miles K (2008) Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput Surv 41(6), Art. No. 6Google Scholar
  59. Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3):1155–1173MATHMathSciNetCrossRefGoogle Scholar
  60. Stadler PF, Happel R (1999) Random field models for fitness landscapes. J Math Biol 38(5):435–478MATHMathSciNetCrossRefGoogle Scholar
  61. Streeter M, Smith SF (2008) New techniques for algorithm portfolio design. In: Conference in Uncertainty in Artificial Intelligence, pp. 519–527. AUAI, Helsinki, FinlandGoogle Scholar
  62. Taillard ED, Gambardella LM, Gendreau M, Potvin JY (2001) Adaptive memory programming: a unified view of metaheuristics. Eur J Oper Res 135(1):1–16MATHMathSciNetCrossRefGoogle Scholar
  63. Takahama T, Sakai S (2005) Constrained optimization by applying the alpha constrained method to the nonlinear simplex method with mutations. IEEE Trans Evol Comput 9(5):437–451CrossRefGoogle Scholar
  64. Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heurist 8(5):541–564CrossRefGoogle Scholar
  65. Tomasello M, Kruger A, Ratner H (1993) Cultural learning. Behav Brain Sci 16(3):495–511CrossRefGoogle Scholar
  66. Ventura S, Romero C, Zafra A, Delgado JA, Hervas C (2008) JCLEC: a Java framework for evolutionary computation. Soft Comput 12(4):381–392CrossRefGoogle Scholar
  67. Vrugt JA, Robinson BA, Hyman JM (2009) Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Trans Evol Comput 13(2):243–259CrossRefGoogle Scholar
  68. Wagner S (2009) Heuristic optimization software systems—modeling of heuristic optimization algorithms in the heuristiclab software environment. Phd thesis, Johannes Kepler University, LinzGoogle Scholar
  69. Wang Y, Cai Z, Zhou Y, Zeng W (2008) An adaptive tradeoff model for constrained evolutionary optimization. IEEE Trans Evol Comput 12(1):80–92CrossRefGoogle Scholar
  70. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRefGoogle Scholar
  71. Woolley AW, Chabris CF, Pentland A, Hashmi N, Malone TW (2010) Evidence for a collective intelligence factor in the performance of human groups. Science 330(6004):686–688Google Scholar
  72. Xie XF, Liu J (2005) A compact multiagent system based on autonomy oriented computing. In: IEEE/WIC/ACM international conference on intelligent agent technology. IEEE, Compiegne, pp 38–44Google Scholar
  73. Xie XF, Liu J (2009) Multiagent optimization system for solving the traveling salesman problem (TSP). IEEE Trans Syst Man Cybern Part B Cybern 39(2):489–502CrossRefGoogle Scholar
  74. Xie XF, Zhang WJ (2004) SWAF: swarm algorithm framework for numerical optimization. In: Genetic and evolutionary computation conference (GECCO). Springer, Seattle, pp 238–250Google Scholar
  75. Xie XF, Zhang WJ, Yang ZL (2002) Social cognitive optimization for nonlinear programming problems. In: International conference on machine learning and cybernetics. IEEE, Beijing, pp 779–783Google Scholar
  76. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958CrossRefGoogle Scholar
  77. Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: IEEE international conference on systems, man, and cybernetics. IEEE, Washington, DC, pp 3816–3821Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Computer ScienceHong Kong Baptist UniversityKowloon TongHong Kong
  3. 3.Department of PhysicsCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations