Soft Computing

, Volume 17, Issue 6, pp 913–924 | Cite as

Population-based optimization of cytostatic/cytotoxic combination cancer chemotherapy

Methodologies and Application

Abstract

This article studies the suitability of modern population based algorithms for designing combination cancer chemotherapies. The problem of designing chemotherapy schedules is expressed as an optimization problem (an optimal control problem) where the objective is to minimize the tumor size without compromising the patient’s health. Given the complexity of the underlying mathematical model describing the tumor’s progression (considering two types of drugs, the cell cycle and the immune system response), analytical and classical optimization methods are not suitable, instead, stochastic heuristic optimization methods are the right tool to solve the optimal control problem. Considering several solution quality and performance metrics, we compared three powerful heuristic algorithms for real-parameter optimization, namely, CMA evolution strategy, differential evolution, and particle swarm pattern search method. The three algorithms were able to successfully solve the posed problem. However, differential evolution outperformed its counterparts both in quality of the obtained solutions and efficiency of search.

Keywords

Evolutionary algorithms Differential evolution Evolution strategies Particle swarm optimization Numerical optimization Optimal control Cancer chemotherapy Combination chemotherapy 

References

  1. Acampora G, Cadenas J, Loia V, Ballester E (2011) Achieving memetic adaptability by means of agent-based machine learning. IEEE Trans Ind Inform 7(4):557–569CrossRefGoogle Scholar
  2. Acampora G, Cadenas J, Loia V, Ballester E (2011) A multi-agent memetic system for human-based knowledge selection. Syst Man Cybern Part A IEEE Trans Syst Hum 41(5):946–960CrossRefGoogle Scholar
  3. Acampora G, Loia V, Salerno S, Vitiello A (2012) A hybrid evolutionary approach for solving the ontology alignment problem. Int J Intell Syst 27(3):189–216CrossRefGoogle Scholar
  4. Arnaldo I, Contreras I, Millan-Ruiz D, Hidalgo J, Krasnogor N (2013) Matching island topologies to problem structure in parallel evolutionary algorithms. Soft Comput, pp 1–17. doi:10.1007/s00500-013-0995-9
  5. Chuang L, Lotzova E, Cook K, Cristoforoni P, Morris M, Wharton T (1993) Effect of new investigational drug taxol on oncolytic activity and stimulation of human lymphocytes. Gynecol Oncol 49:291–298CrossRefGoogle Scholar
  6. Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, Placido SD, Bianco AR, Tortora G (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by zd-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6(5):2053–63Google Scholar
  7. de Pillis LAR (2003) The dynamics of an optimally controlled tumnor model: a case study. Math Comput Model 37(11):1221–1244MATHCrossRefGoogle Scholar
  8. de Pillis L, Radunskaya A (2001) A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J Theor Med 3:79–100MATHCrossRefGoogle Scholar
  9. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18CrossRefGoogle Scholar
  10. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11:86–92CrossRefGoogle Scholar
  11. Hansen N (2006) The CMA evolution strategy: a comparing review, towards a new evolutionary computation. In: Advances on estimation of distribution algorithms, vol 192, chap 4. Springer, Berlin, pp 75–102Google Scholar
  12. Hansen N (2008) The CMA evolution strategy. http://www.lri.fr/hansen/cmaesintro.html
  13. Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Yao X et al (eds) Parallel Problem solving from nature PPSN VIII. LNCS, vol 3242. Springer, Berlin, pp 282–291Google Scholar
  14. Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of the 1996 IEEE international conference on evolutionary computation. IEEE Service Center, Piscataway, NJ, USA, pp 312–317Google Scholar
  15. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195CrossRefGoogle Scholar
  16. Hardman J, Linbird L (1996) Goodman and Gilman’s the pharmacological basis of therapeutics, 9th edn. Mc Graw Hill, Health Profesion Division, New YorkGoogle Scholar
  17. Haupt S, Haupt R, Young G (2011) A mixed integer genetic algorithm used in biological and chemical defense applications. Soft Comput 15(1):51–59CrossRefGoogle Scholar
  18. Hodges J, Lehman E (1962) Ranks methods for combination of independent experiments in analysis of variance. Ann Math Stat 33:482–497MATHCrossRefGoogle Scholar
  19. Houshmand M, Saleh R, Houshmand M (2011) Logic minimization of QCA circuits using genetic algorithms. In: Gaspar-Cunha A, Takahashi R, Schaefer G, Costa L (eds) Soft computing in industrial applications. Advances in intelligent and soft computing, vol 96. Springer, Berlin, pp 393–403Google Scholar
  20. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4. IEEE Press, Piscataway, NJ, USA, pp 1942–1948Google Scholar
  21. Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45(3):385–482MathSciNetMATHCrossRefGoogle Scholar
  22. Li D, Hong G, Liyong Z (2013) A hybrid genetic algorithm-fuzzy c-means approach for incomplete data clustering based on nearest-neighbor intervals. Soft Comput, pp 1–10. doi:10.1007/s00500-013-0997-7
  23. Liang Y, Leung KS, Mok TSK (2006) A novel evolutionary drug scheduling model in cancer chemotherapy. IEEE Trans Inf Technol Biomed 10(2):237–245CrossRefGoogle Scholar
  24. McCall J, Petrovski A, Shakya S (2008) Evolutionary algorithms for cancer chemotherapy optimization. In: Fogel GB, Corne DW, Pan Y (eds) Computational intelligence in bioinformatics. IEEE press series on computational intelligence, Chap. 12. Wiley Interscience, London, pp 265–296Google Scholar
  25. Morrison R, Jong KD (2002) Measurement of population diversity. In: Artificial evolution: 5th international conference, evolution artificielle (EA 2001). LNCS, vol 2310. Springer, Berlin, pp 31–41Google Scholar
  26. Nunez A, Merayo M, Hierons R, Nunez M (2013) Using genetic algorithms to generate test sequences for complex timed systems. Soft Comput 17(2):301–315CrossRefGoogle Scholar
  27. Ochoa G, Villasana M, Burke E (2007) An evolutionary approach to cancer chemotherapy. Genet Progr Evol Mach 8(4):301–318CrossRefGoogle Scholar
  28. Ong YS, Lim MH, Neri F, Ishibuchi H (2009) Special issue on emerging trends in soft computing: memetic algorithms. Soft Comput 13(8-9):739–740CrossRefGoogle Scholar
  29. Panetta J, Adam J (1995) A mathematical model of cycle-specific chemotherapy. Math Comput Model 22(2):67–82MathSciNetMATHCrossRefGoogle Scholar
  30. Park JK, Lee SH, Kang JH, Nishio K, Saijo N, Kuh HJ (2004) Synergistic interaction between gefitinib (Iressa, ZD1839) and paclitaxel against human gastric carcinoma cells. Anticancer Drugs 15(8):809–19CrossRefGoogle Scholar
  31. Payne J, Giacobini M, Moore J (2013) Complex and dynamic population structures: synthesis, open questions, and future directions. Soft Comput, pp 1–12. doi:10.1007/s00500-013-0994-x
  32. Petrovski A, McCall J (2001) Multi-objective optimisation of cancer chemotherapy using evolutionary algorithms. In: Zitzler E, Deb K, Thiele L, Coello CAC, Corne D (eds) Proceedings of the first international conference on evolutionary multi-criterion optimization, EMO 2001. LNCS, vol 1993. Springer, Berlin, pp 531–545Google Scholar
  33. Petrovski A, Shakya S, McCall J (2006) Optimising cancer chemotherapy using an estimation of distribution algorithm and genetic algorithms. In: Cattolico M (ed) Genetic and evolutionary computation conference, GECCO 2006, vol 1. ACM Press, New York, pp 413–418Google Scholar
  34. Petrovski A, Sudha B, McCall J (2004) Optimising cancer chemotherapy using particle swarm optimisation and genetic algorithms. In: Yao X, Burke EK, Lozano J, Smith J, Guervós JJM, Bullinaria JA, Rowe JE, Tiño P, Kabán A, Schwefel HP (eds) Parallel problem solving from nature—PPSN VIII. LNCS, vol 3242. Springer, Berlin, pp 633–641Google Scholar
  35. Piechocki MP, Yoo GH, Dibbley SK, Amjad EH, Lonardo F (2006) Iressa induces cytostasis and augments fas-mediated apoptosis in acinic cell adenocarcinoma overexpressing HER2/neu. Int J Cancer 119:441–454CrossRefGoogle Scholar
  36. Price KV, Storn RM, Lampinen JA (2005) Differential evolution, a practical approach to global optimization. Natural computing series. Springer, BerlinGoogle Scholar
  37. Rechenberg I (1973) Evolution strategy: optimization of technical systems by means of biological evolution. Fromman-Holzboog, StuttgartGoogle Scholar
  38. Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA, USAGoogle Scholar
  39. Storn R, Price K (1997) Differential evolution a simple and efficient heuristic for global optimisation over continuous spaces. J Glob Optim 11(4):341–359MathSciNetMATHCrossRefGoogle Scholar
  40. Swierniak A, Polanski A, Kimmel M (1996) Optimal control problem arising in cell-cycle- specific cancer chemotherapy. Cell Prolif 29:117–139CrossRefGoogle Scholar
  41. Tse SM, Liang Y, Leung KS, Lee KH, Mok TSK (2007) A memetic algorithm for multiple drugs cancer chemotherapy schedule optimization. IEEE Trans Syst Man Cybern Part B Cybern 37(1):84–91Google Scholar
  42. Vaz AIF, Vicente LN (2007) A particle swarm pattern search method for bound constrained global optimization. J Glob Optim 39:197–219MathSciNetMATHCrossRefGoogle Scholar
  43. Vaz AIF, Vicente LN (2010) Pswarm solver homepage. http://www.norg.uminho.pt/aivaz/pswarm/
  44. Villasana M, Ochoa G (2004) Heuristic design of cancer chemotherapy. IEEE Trans Evol Comput 8(6):513–521CrossRefGoogle Scholar
  45. Villasana M, Ochoa G, Aguilar S (2010) Modeling and optimization of combined cytostatic and cytotoxic cancer chemotherapy. Artif Intell Med 50:163–173CrossRefGoogle Scholar
  46. Villasana M, Radunskaya A (2003) A delay differential equation model for tumor growth. J Math Biol 47:270–294MathSciNetMATHCrossRefGoogle Scholar
  47. Wheldon T (1998) Mathematical models in cancer research. Adam Hilger, BristolGoogle Scholar
  48. Zoli W, Flamigni A, Frassineti G, Bajorko P, De Paola F, Milandri C, Amadori D, Gasperi-Campani A (1995) In vitro activitity of taxol and toxotere in comparison with doxorubicin and cisplatin on primary cell cultures of human breast cancers. Breast Cancer Res Treat 34:63–69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Computing Science and Mathematics, School of Natural SciencesUniversity of StirlingStirlingScotland
  2. 2.Departamento de Cómputo Científico y EstadísticaUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations