Soft Computing

, Volume 18, Issue 1, pp 71–83 | Cite as

Fuzzy characterization of spike synchrony in parallel spike trains

  • David Picado Muiño
  • Iván Castro León
  • Christian Borgelt
Methodologies and Application

Abstract

We present a framework for characterizing spike (and spike-train) synchrony in parallel neuronal spike trains that is based on the identification of spikes with what we call influence maps: real-valued functions that describe an influence region around the corresponding spike times within which possibly graded (i.e., fuzzy) synchrony with other spikes is defined. We formalize two models of synchrony in this framework: the bin-based model (the almost exclusively applied model in the field) and a novel, alternative model based on a continuous, graded notion of synchrony, aimed at overcoming the drawbacks of the bin-based model. We study the task of identifying frequent (and synchronous) neuronal patterns from parallel spike trains in our framework, formalized as an instance of what we call the fuzzy frequent pattern mining problem (a generalization of standard frequent pattern mining) and briefly evaluate our synchrony models on this task.

Keywords

Spike-train synchrony Spike synchrony Parallel spike trains Fuzzy frequent pattern mining 

References

  1. Abeles M (1982) Local cortical circuits: an electrophysiological study. Springer, BerlinCrossRefGoogle Scholar
  2. Abeles M (1982) Role of the cortical neuron: integrator or coincidence detector? Israel J Med Sci 18:83–92Google Scholar
  3. Buzśaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451CrossRefGoogle Scholar
  4. Delgado M, Marín N, Sánchez D, Vila MA (2003) Fuzzy association rules: general model and applications. IEEE Trans Fuzzy Syst 11:214–225CrossRefGoogle Scholar
  5. Feldt S, Waddell J, Hetrick VL, Berke JD, Zochowski M (2009) A functional clustering algorithm for the analysis of dynamic network data. Phys Rev E Stat Nonlinear Soft Matter Phys 79(5):056104Google Scholar
  6. Gerstein GL, Perkel DH (1972) Mutual temporal relationships among neuronal spike trains. Statistical techniques for display and analysis. Biophys J 12(5):453–473CrossRefGoogle Scholar
  7. Gerstein GL, Perkel DH, Subramanian KN (1978) Identification of functionally related neural assemblies. Brain Res Brain Res Rev 140(1):43–62CrossRefGoogle Scholar
  8. Gerstein G (2010) Gravitational clustering. In: Grün S, Rotter S (eds) Analysis of parallel spike trains. Springer series in computational neuroscience. Springer, Heidelberg, pp 157–172Google Scholar
  9. Goedeke S, Diesmann M (2008) The mechanism of synchronization in feed-forward neuronal networks. New J Phys 10:015007Google Scholar
  10. Goethals B (2010) Frequent set mining. Data mining and knowledge discovery handbook (2nd edn). Springer, Berlin, pp 321–338Google Scholar
  11. Grimmett GR, Stirzaker DR (2001) Probability and random processes. Oxford University Press, OxfordGoogle Scholar
  12. Grün S, Diesmann M, Grammont F, Riehle A, Aertsen A (1999) Detecting unitary events without discretization of time. J Neurosci Methods 93:67–79CrossRefGoogle Scholar
  13. Grün S, Diesmann M, Aertsen A (2002a) ‘Unitary events’ in multiple single-neuron spiking activity, I: detection and significance. Neural Comput 14(1):43–80CrossRefMATHGoogle Scholar
  14. Grün S, Diesmann M, Aertsen A (2002b) ‘Unitary events’ in multiple single-neuron spiking activity, II: non-stationarydata. Neural Comput 14(1):81–119CrossRefMATHGoogle Scholar
  15. Grün S (2009) Data-driven significance estimation of precise spike correlation. J Neurophysiol 101(3):1126–1140CrossRefGoogle Scholar
  16. Grün S, Diesmann M, Aertsen A (2010) Unitary event analysis. In: Grün S, Rotter S (eds) Analysis of parallel spike trains. Springer series in computational neuroscience, Springer, Heidelberg, pp 191–218Google Scholar
  17. Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  18. König P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci 19:130–137CrossRefGoogle Scholar
  19. Kuhn A, Aertsen A, Rotter S (2003) Higher-order statistics of input ensembles and the response of simple model neurons. Neural Comput 15:67–101CrossRefMATHGoogle Scholar
  20. Louis S, Borgelt C, Grün S (2010) Generation and selection of surrogate methods for correlation analysis. In: Grün S, Rotter S (eds) Analysis of parallel spike trains. Springer series in computational neuroscience, Springer, New York, pp 359–382Google Scholar
  21. Ludwig KA, Uram JD, Yang J, Martin DC, Kipke DR (2006) Chronic neural recordings using silicon micro electrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (pedot) film. J Neural Eng 3(1):59–70CrossRefGoogle Scholar
  22. Nawrot M, Aertsen A, Rotter S (1999) Single-trial estimation of neuronal firing rates: from single neuron spike trains to population activity. J Neurosci Methods 94:81–92CrossRefGoogle Scholar
  23. Picado Muiño D, Castro León I, Borgelt C (2012) Fuzzy frequent pattern mining in spike trains. In: Proceedings of the intelligent data analysis symposium 2012 (IDA 2012) (to appear shortly)Google Scholar
  24. Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374CrossRefGoogle Scholar
  25. Syropoulos A (2001) Mathematics of multisets. In: Calude CS, Paun G, Rozenberg G, Salomaa A (eds) Multiset processing: mathematical, computer science,and molecular computing points of view. Lecture notes in computer science 2235. Springer, Berlin, pp 347–358Google Scholar
  26. Tuckwell HC (1988) Introduction to theoretical neurobiology. Volumes I and II. Cambridge University Press, CambridgeGoogle Scholar
  27. Wang X, Borgelt C, Kruse R (2005) Mining fuzzy frequent item sets. In: Proceedings of the 11th international fuzzy systems association world congress (IFSA05). Tsinghua University Press, New York, p 533Google Scholar
  28. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Picado Muiño
    • 1
  • Iván Castro León
    • 1
  • Christian Borgelt
    • 1
  1. 1.European Centre for Soft Computing, Edificio de InvestigaciónMieresSpain

Personalised recommendations