Soft Computing

, Volume 17, Issue 8, pp 1357–1366 | Cite as

Variants of the general interval power function

  • Oliver Heimlich
  • Marco Nehmeier
  • Jürgen Wolff von Gudenberg
Focus
  • 118 Downloads

Abstract

The article gives an overview of power function variants and compares three differently extensive versions for use in interval arithmetics. Aiming at the general power function for inclusion in interval libraries, which is defined for as many pairs of base and exponent as possible, we observe that the definition of a power for each such pair depends on the context. This problem eventually comes up at the point where reasonable doubts about the definition \(0^0\) and powers with negative base in correlation with a non-integral exponent arise. We come up with several variants serving distinct purposes, yet also recommend a general-purpose power function, which is unique for being restricted to integral exponents on the domain of negative bases. Three different variants of interval power functions satisfy all meaningful general exponentiation needs. We provide a unified treatment to handle the variants and present valuable implementation techniques for the computation of these interval functions along with a mathematic foundation.

Keywords

Power function Interval arithmetic Interval functions 

Notes

Acknowledgments

We thank the anonymous referees for their detailed and helpful comments.

References

  1. Averbukh B, Günther H (2008) On powers and power functions (Über die Potenzen und die Potenzfunktionen). Mathematikinformation (49):5–23 (german)Google Scholar
  2. Chiriaev D, Walster GW (1998) Interval arithmetic specification. Tech. rep.Google Scholar
  3. Daramy-Loirat C, Defour D, de Dinechin F, Gallet M, Gast N, Lauter CQ, Muller JM (2009) CR-LIBM a library of correctly rounded elementary functions on double-precision. http://lipforge.ens-lyon.fr/frs/download.php/153/crlibm-1.0beta3.pdf. Accessed Mar 25, 2012
  4. IEEE 754, (2008) IEEE 754-2008, Standard for floating-point arithmetic. IEEE, New YorkGoogle Scholar
  5. IEEE P1788 (2009) IEEE interval standard working group-P1788. http://grouper.ieee.org/groups/1788/
  6. ISO C90 (1990) The ANSI C standard (C90). Tech. Rep. 9899:1990, ISO/IECGoogle Scholar
  7. Java 6 (2011) Java Platform, Standard Edition 6: API Specification. OracleGoogle Scholar
  8. Knuth D (1992) Two notes on notation. Am Math Mon 99(5):403–422MathSciNetMATHCrossRefGoogle Scholar
  9. Krämer W, Wolff von Gudenberg J (2003) Extended interval power function. Relia Comput 9:339–347. doi: 10.1023/A:1025175029490 MATHCrossRefGoogle Scholar
  10. Krämer W, Kulisch U, Lohner R (1994) Numerical toolbox for verified computing II: advanced numerical problems, Draft version. http://www2.math.uni-wuppertal.de/~xsc/literatur/tb2.pdf, Accessed Dec 13, 2011
  11. Lauter CQ, Lefèvre V (2009) An efficient rounding boundary test for pow(x, y) in double precision. IEEE Trans Comput 58(2):197–207. doi: 10.1109/TC.2008.202 MathSciNetCrossRefGoogle Scholar
  12. Moebius A (1834) ‘Beweis der Gleichung \(0^{0}=1\) nach J. F. Pfaff’. Journal für die reine und angewandte Mathematik 12:134–136 (german)Google Scholar
  13. Muller JM, Brisebarre N, de Dinecin F, Jeannerod CP, Lefèvre V, Melquion G, Revol N, Stehlè D, Torres S (2010) Handbook of floating point arithmetic. Birkhäuser, BerlinGoogle Scholar
  14. Petrov E (2007) Algorithm for evaluation of the interval power function of unconstrained arguments. CoRR abs/0704.3141Google Scholar
  15. Pryce JD, Corliss GF (2006) Interval arithmetic with containment sets. Computing 78(3):251–276. doi: 10.1007/s00607-006-0180-4 MathSciNetMATHCrossRefGoogle Scholar
  16. Rump S (1999) INTLAB—INTerval LABoratory. In: Csendes T (ed) Developments in reliable computing. Kluwer Academic Publishers, Dordrecht, pp 77–104CrossRefGoogle Scholar
  17. Truss JK (1997) Foundations of mathematical analysis. Oxford Science Publications, Clarendon Press, OxfordGoogle Scholar
  18. Wolff von Gudenberg J (2009) Motion 10, a Proposal for Elementary Functions. In: IEEE P1788(2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oliver Heimlich
    • 1
  • Marco Nehmeier
    • 1
  • Jürgen Wolff von Gudenberg
    • 1
  1. 1.Institute of Computer Science, University of WürzburgWürzburgGermany

Personalised recommendations