Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Variants of the general interval power function

  • 139 Accesses


The article gives an overview of power function variants and compares three differently extensive versions for use in interval arithmetics. Aiming at the general power function for inclusion in interval libraries, which is defined for as many pairs of base and exponent as possible, we observe that the definition of a power for each such pair depends on the context. This problem eventually comes up at the point where reasonable doubts about the definition \(0^0\) and powers with negative base in correlation with a non-integral exponent arise. We come up with several variants serving distinct purposes, yet also recommend a general-purpose power function, which is unique for being restricted to integral exponents on the domain of negative bases. Three different variants of interval power functions satisfy all meaningful general exponentiation needs. We provide a unified treatment to handle the variants and present valuable implementation techniques for the computation of these interval functions along with a mathematic foundation.

This is a preview of subscription content, log in to check access.


  1. 1.

    Private communication with Dan Zuras.


  1. Averbukh B, Günther H (2008) On powers and power functions (Über die Potenzen und die Potenzfunktionen). Mathematikinformation (49):5–23 (german)

  2. Chiriaev D, Walster GW (1998) Interval arithmetic specification. Tech. rep.

  3. Daramy-Loirat C, Defour D, de Dinechin F, Gallet M, Gast N, Lauter CQ, Muller JM (2009) CR-LIBM a library of correctly rounded elementary functions on double-precision. http://lipforge.ens-lyon.fr/frs/download.php/153/crlibm-1.0beta3.pdf. Accessed Mar 25, 2012

  4. IEEE 754, (2008) IEEE 754-2008, Standard for floating-point arithmetic. IEEE, New York

  5. IEEE P1788 (2009) IEEE interval standard working group-P1788. http://grouper.ieee.org/groups/1788/

  6. ISO C90 (1990) The ANSI C standard (C90). Tech. Rep. 9899:1990, ISO/IEC

  7. Java 6 (2011) Java Platform, Standard Edition 6: API Specification. Oracle

  8. Knuth D (1992) Two notes on notation. Am Math Mon 99(5):403–422

  9. Krämer W, Wolff von Gudenberg J (2003) Extended interval power function. Relia Comput 9:339–347. doi:10.1023/A:1025175029490

  10. Krämer W, Kulisch U, Lohner R (1994) Numerical toolbox for verified computing II: advanced numerical problems, Draft version. http://www2.math.uni-wuppertal.de/~xsc/literatur/tb2.pdf, Accessed Dec 13, 2011

  11. Lauter CQ, Lefèvre V (2009) An efficient rounding boundary test for pow(x, y) in double precision. IEEE Trans Comput 58(2):197–207. doi:10.1109/TC.2008.202

  12. Moebius A (1834) ‘Beweis der Gleichung \(0^{0}=1\) nach J. F. Pfaff’. Journal für die reine und angewandte Mathematik 12:134–136 (german)

  13. Muller JM, Brisebarre N, de Dinecin F, Jeannerod CP, Lefèvre V, Melquion G, Revol N, Stehlè D, Torres S (2010) Handbook of floating point arithmetic. Birkhäuser, Berlin

  14. Petrov E (2007) Algorithm for evaluation of the interval power function of unconstrained arguments. CoRR abs/0704.3141

  15. Pryce JD, Corliss GF (2006) Interval arithmetic with containment sets. Computing 78(3):251–276. doi:10.1007/s00607-006-0180-4

  16. Rump S (1999) INTLAB—INTerval LABoratory. In: Csendes T (ed) Developments in reliable computing. Kluwer Academic Publishers, Dordrecht, pp 77–104

  17. Truss JK (1997) Foundations of mathematical analysis. Oxford Science Publications, Clarendon Press, Oxford

  18. Wolff von Gudenberg J (2009) Motion 10, a Proposal for Elementary Functions. In: IEEE P1788(2009)

Download references


We thank the anonymous referees for their detailed and helpful comments.

Author information

Correspondence to Marco Nehmeier.

Additional information

Communicated by V. Kreinovich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heimlich, O., Nehmeier, M. & Wolff von Gudenberg, J. Variants of the general interval power function. Soft Comput 17, 1357–1366 (2013). https://doi.org/10.1007/s00500-013-1008-8

Download citation


  • Power function
  • Interval arithmetic
  • Interval functions