Soft Computing

, Volume 17, Issue 6, pp 1059–1075 | Cite as

Service oriented evolutionary algorithms

  • P. García-SánchezEmail author
  • J. González
  • P. A. Castillo
  • M. G. Arenas
  • J. J. Merelo-Guervós
Methodologies and Application


This work presents a service oriented architecture for evolutionary algorithms, and an implementation of this architecture using a specific technology (called OSGiLiath). Service oriented architecture is a computational paradigm where users interact using services to increase the integration between systems. The presented abstract architecture is formed by loosely coupled, highly configurable and language-independent services. As an example of an implementation of this architecture, a complete process development using a specific service oriented technology is explained. With this implementation, less effort than classical development in integration, distribution mechanisms and execution time management has been attained. In addition, steps, ideas, advantages and disadvantages, and guidelines to create service oriented evolutionary algorithms are presented. Using existing software, or from scratch, researchers can create services to increase the interoperability in this area.


Evolutionary algorithms Service oriented architecture Service oriented science Web services Interoperability Distributed computing 



This work has been supported in part by FPU research grant AP2009-2942 and projects AmIVital (CENIT2007-1010), EvOrq (P08-TIC-03903), UGR PR-PP2011-5, and TIN2011-28627-C04-02. Authors wish to thank reviewers’ comments, whose suggestion and guidelines have contributed to improve this work.


  1. Alba E, Nebro AJ, Troya JM (2002) Heterogeneous computing and parallel genetic algorithms. J Parallel Distrib Comput 62(9):1362–1385zbMATHCrossRefGoogle Scholar
  2. Alba E, Almeida F, Blesa M, Cotta C, Daz M, Dorta I, Gabarr J, Le C, Luque G, Petit J, Rodrguez C, Rojas A, Xhafa F (2006) Efficient parallel LAN/WAN algorithms for optimization. The MALLBA project. Parallel Comput 32(5–6):415–440Google Scholar
  3. Altunay M, Avery P, Blackburn K, Bockelman B, Ernst M, Fraser D, Quick R, Gardner R, Goasguen S, Levshina T, Livny M, McGee J, Olson D, Pordes R, Potekhin M, Rana A, Roy A, Sehgal C, Sfiligoi I, Wuerthwein F; Open Sci Grid Executive Board (2011) A science driven production cyberinfrastructure. Open Sci Grid J GRID Comput 9(2, Sp. Iss. SI):201–218Google Scholar
  4. Arenas M, Collet P, Eiben A, Jelasity M, Merelo JJ, Paechter B, Preub M, Schoenauer M (2002) A framework for distributed evolutionary algorithms. In: Parallel Problem Solving from Nature, PPSN VII, pp 665–675Google Scholar
  5. Arsanjani A, Ghosh S, Allam A, Abdollah T, Ganapathy S, Holley K (2008) SOMA: a method for developing service-oriented solutions. IBM Syst J 47(3):377–396CrossRefGoogle Scholar
  6. Babaoglu O, Jelasity M, Montresor A, Fetzer C, Leonardi S, van Moorsel A (2005) The self-star vision. Self-star properties in complex information systems, pp 1–20Google Scholar
  7. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput Syst 25:599–616Google Scholar
  8. Cox SJ, Fairman MJ, Xue G, Wason JL, Keane AJ (2001) The GRID: computational and data resource sharing in engineering optimisation and design search. In: 30th International Workshops on Parallel Processing (ICPP 2001 Workshops), 3–7 September 2001. IEEE Computer Society, Valencia, pp 207–212Google Scholar
  9. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197Google Scholar
  10. del Val Noguera E, Pedruelo MR (2008) A survey on web service discovering and composition. In: Cordeiro J, Filipe J, Hammoudi S (eds) WEBIST 2008, Proceedings of the fourth International Conference on Web Information Systems and Technologies, vol 1. INSTICC Press, Funchal, May 4–7, 2008, pp 135–142Google Scholar
  11. Durillo JJ, Nebro AJ, Alba E (2010) The jMetal framework for multi-objective optimization: design and architecture. In: IEEE congress on evolutionary computation, pp 1–8Google Scholar
  12. Eiben A, Smith J (2005) What is an evolutionary algorithm? In: Rozenberg G (ed) Introduction to evolutionary computing. Addison Wesley, Reading, pp 15–35Google Scholar
  13. Eiben A, Smit S (2011) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31CrossRefGoogle Scholar
  14. Eiben A, Haasdijk E, Bredeche N (2010) Embodied, on-line, on-board evolution for autonomous robotics. In: Levi P, Kernbach S (eds) Symbiotic multi-robot organisms: reliability, adaptability, evolution, vol 10. Springer, New York, pp 361–382Google Scholar
  15. Fan X-Q, Fang X-W, Jiang C-J (2011) Research on Web service selection based on cooperative evolution. Expert Syst Appl 38(8):9736–9743Google Scholar
  16. Foster I (2005a) Globus Toolkit version 4: software for service-oriented systems. In: Jin H, Reed D, Jiang W (ed) Network and parallel computing proceedings, volume 3779 of Lecture Notes in Computer Science, pp 2–13Google Scholar
  17. Foster I (2005b) Service-oriented science. Science 308(5723):814Google Scholar
  18. Gagné C, Parizeau M (2006) Genericity in evolutionary computation software tools: principles and case-study. Int J Artif Intell Tools 15(2):173CrossRefGoogle Scholar
  19. García-Sánchez P, González J, Castillo P, Merelo J, Mora A, Laredo J, Arenas M (2010) A distributed service oriented framework for metaheuristics using a public standard. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp 211–222Google Scholar
  20. García-Sánchez P, González J, Mora AM, Prieto A (2013) Deploying intelligent e-health services in a mobile gateway. Expert Syst Appl 40(4):1231–1239Google Scholar
  21. Guervós J, Valdivieso P, López G, Arenas M (2003) Specifying evolutionary algorithms in xml. Comput Methods Neural Model, 1042–1043Google Scholar
  22. Ho Q-T, Ong Y-S, Cai W (2004) "gridifying" aerodynamic design problem using GridRPC. In: Grid and cooperative computing, volume 3032 of Lecture Notes in Computer Science. Springer, Berlin, pp 83–90Google Scholar
  23. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506Google Scholar
  24. Imade H, Morishita R, Ono I, Ono N, Okamoto M (2004) A grid-oriented genetic algorithm framework for bioinformatics. New Gener Comput 22(2):177–186zbMATHCrossRefGoogle Scholar
  25. Jamil E (2009) White paper: what really is SOA. A comparison with cloud computing, Web 2.0, SaaS, WOA, Web Services, PaaS and others.
  26. Jiao Z, Wason JL, Song W, Xu F, Eres MH, Keane AJ, Cox SJ (2004) Databases, workflows and the grid in a service oriented environment. In: Euro-Par 2004 parallel processing, 10th international Euro-Par conference, Pisa, proceedings, volume 3149 of Lecture Notes in Computer Science. Springer, Berlin, pp 972–979Google Scholar
  27. Lim D, Ong Y-S, Jin Y, Sendhoff B, Lee B-S (2007) Efficient hierarchical parallel genetic algorithms using grid computing. Future Gener Comput Syst 23(4):658–670CrossRefGoogle Scholar
  28. Lim J, Choi O et al (2008) An evaluation method for dynamic combination among OSGi bundles based on service gateway capability. IEEE Trans Consum Electron 54(4):1698–1704Google Scholar
  29. Lozano M, Garcia-Martinez C (2010) Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report. Comput Oper Res 37(3, Sp. Iss. SI):481–497Google Scholar
  30. Luke S et al (2009) ECJ: a Java-based evolutionary computation and genetic programming research system.
  31. Merelo Guervós J, Castillo P, Alba E (2010) Algorithm::evolutionary, a flexible Perl module for evolutionary computation. Soft computing—a fusion of foundations, methodologies and applications, vol 14, pp 1091–1109Google Scholar
  32. Moussa H, Gao T, Yen I-L, Bastani F, Jeng J-J (2010) Toward effective service composition for real-time SOA-based systems. Serv Orient Comput Appl 4(1):17–31CrossRefGoogle Scholar
  33. Munawar A, Wahib M, Munetomo M, Akama K (2010) The design, usage, and performance of gridufo A GRID based unified framework for optimization. Future Gener Comput Syst 26(4):633–644CrossRefGoogle Scholar
  34. Ng H-K, Ong Y-S, Hung T, Lee B-S (2005) Grid enabled optimization. In: Advances in grid computing—EGC 2005, volume 3470 of Lecture Notes in Computer Science. Springer, Berlin. pp 296–304Google Scholar
  35. OSGi Alliance (2010) Benefits of using OSGi.
  36. OSGi Alliance (2010) OSGi service platform release 4.2.
  37. Papazoglou M, van den Heuvel W-J (2007) Service oriented architectures: approaches, technologies and research issues. VLDB J 16:389–415Google Scholar
  38. Parejo J, Ruiz-Corts A, Lozano S, Fernandez P (2012) Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput 16:527–561Google Scholar
  39. Petzold M, Ullrich O, Speckenmeyer E (2011) Dynamic distributed simulation of DEVS models on the OSGi service platform. In: Proceedings of ASIM 2011Google Scholar
  40. Schaffer J, Eshelman L (1991) On crossover as an evolutionary viable strategy. In: Belew R, Booker L (eds) Proceedings of the 4th international conference on genetic algorithms. Morgan Kaufmann, pp 61–68Google Scholar
  41. Serpell M, Smith JE (2010) Self-adaptation of mutation operator and probability for permutation representations in genetic algorithms. Evol Comput 18(3, Sp. Iss. SI):491–514Google Scholar
  42. Song W, Keane A, Cox S (2003) Cfd-based shape optimisation with grid-enabled design search toolkits. In: UK e-science all hands meeting 2003, EPSRC, pp 619–627Google Scholar
  43. Song W, Ong YS, Ng HK, Keane A, Cox S, Lee BS (2004) A service-oriented approach for aerodynamic shape optimisation across institutional boundaries. In: ICARCV 2004 8th control, automation, robotics and vision conference, vol 3, pp 2274 –2279Google Scholar
  44. Ventura S, Romero C, Zafra A, Delgado JA, Hervas C (2008) JCLEC: a Java framework for evolutionary computation. Soft Comput 12(4):381–392Google Scholar
  45. Wagner S, Affenzeller M (2005) HeuristicLab: a generic and extensible optimization environment. In: Ribeiro B, Albrecht RF, Dobnikar A, Pearson DW, Steele NC (eds) Adaptive and natural computing algorithms. Springer Computer Science. 7th International Conference on Adaptive and Natural Computing Algorithms (ICANNGA), Coimbra, pp 538–541Google Scholar
  46. Wagner S, Winkler S, Pitzer E, Kronberger G, Beham A, Braune R, Affenzeller M (2007) Benefits of plugin-based heuristic optimization software systems. In: Moreno Daz R, Pichler F, Quesada Arencibia A (eds) Computer aided systems theory EUROCAST 2007, volume 4739 of Lecture Notes in Computer Science. Springer, Berlin, pp 747–754Google Scholar
  47. World Wide Web Consortium (2006) Extensible markup language (XML) 1.0, 4th ednGoogle Scholar
  48. Xue G, Song W, Cox SJ, Keane AJ (2004) Numerical optimisation as grid services for engineering design. J Grid Comput 2(3):223–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. García-Sánchez
    • 1
    Email author
  • J. González
    • 1
  • P. A. Castillo
    • 1
  • M. G. Arenas
    • 1
  • J. J. Merelo-Guervós
    • 1
  1. 1.Department of Computer Architecture and Computer TechnologyE.T.S. Ing. Informática y Telecomunicación and CITIC-UGR, University of GranadaGranadaSpain

Personalised recommendations