Advertisement

Soft Computing

, Volume 16, Issue 7, pp 1153–1164 | Cite as

OWL-FC: an upper ontology for semantic modeling of Fuzzy Control

  • C. De MaioEmail author
  • G. Fenza
  • D. Furno
  • V. Loia
  • S. Senatore
Focus

Abstract

This work introduces an OWL-based upper ontology, called OWL-FC (Ontology Web Language for Fuzzy Control), capable to support a semantic definition of Fuzzy Control. It focuses on the fuzzy rules representation by providing domain independent ontology, supporting interoperability and favoring domain ontologies re-usability. The main contribution is that OWL-FC exploits Fuzzy Logic in OWL to model vagueness and uncertainty of the real world. Moreover, OWL-FC enables automatic discovery and execution of fuzzy controllers, by means of context aware parameter setting: appropriate controllers can be activated, depending on the parameters proactively identified in the work environment. In fact, the semantic modeling of concepts allows the characterization of constraints and restrictions for the identification of the right matches between concepts and individuals. OWL-FC ontology provides a wide, semantic-based interoperability among different domain ontologies, through the specification of fuzzy concepts, independently by the application domain. Then, OWL-FC is coherent to the Semantic Web infrastructure and avoids inconsistencies in the ontology.

Keywords

Ontology OWL-S Fuzzy Control 

References

  1. Abulaish M, Dey L (2006) Interoperability among distributed overlapping ontologies—a fuzzy ontology framework. In: Proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence, WI ’06. IEEE Computer Society, Washington, DC, pp 397–403. doi: 10.1109/WI.2006.10
  2. Acampora G, Loia V (2011) Fuzzy control interoperability and scalability for adaptive domotic framework. IEEE Trans Ind Inf 1(2):97–111. doi: 10.1109/TII.2005.844431 Google Scholar
  3. Agarwal S, Hitzler P (2005) Modeling fuzzy rules with description logics. In: Proceedings of workshop on OWL experiences and directions. Galway, Ireland. doi: 10.1.1.59.8946
  4. Bobillo F, Delgado M, Gómez-Romero J, López E (2009) A semantic fuzzy expert system for a fuzzy balanced scorecard. Expert Syst Appl 36:423–433. doi: 10.1016/j.eswa.2007.09.020. http://portal.acm.org/citation.cfm?id=1453254.1453308 Google Scholar
  5. Lee CS, Jian ZW, Huang LK (2005) A fuzzy ontology and its application to news summarization. IEEE Trans Syst Man Cybern Part B Cybern 35(5):859–880CrossRefGoogle Scholar
  6. Lee CS, Wang MH, Acampora G, Hsu CY, Hagras H (2010) Diet assessment based on type-2 fuzzy ontology and fuzzy markup language. Int J Intell Syst 25(12):1187–1216. doi: 10.1002/int.20449 Google Scholar
  7. Martin D, Burstein M, Hobbs E, Lassila O, Mcdermott D, Mcilraith S, Narayanan S, Parsia B, Payne T, Sirin E, Srinivasan N, Sycara K (2004) OWL-S: Semantic Markup for Web Services. Technical report. http://www.w3.org/Submission/OWL-S/
  8. Pan JZ, Stoilos G, Stamou G, Tzouvaras V, Horrocks I (2006) f-swrl: a fuzzy extension of swrl. J Data Semant Spec Issue Emergent Semant 3697:829–834Google Scholar
  9. Parry D (2004) A fuzzy ontology for medical document retrieval. In: Proceedings of the second workshop on Australasian information security, data mining and web intelligence, and software internationalisation, vol 32, ACSW Frontiers ’04. Australian Computer Society, Darlinghurst, pp 121–126. http://portal.acm.org/citation.cfm?id=976440.976458
  10. Ren Y, Cheng X (2008) Semantic-based image retrieval using fuzzy domain ontology. In: Intelligent information technology application, 2008. Second international symposium on IITA ’08, vol 2, pp 141–145. doi: 10.1109/IITA.2008.327
  11. Sanchez E (2006) Fuzzy logic and the semantic web (capturing intelligence). Elsevier, New YorkGoogle Scholar
  12. Stoilos G, Simou N, Stamou G, Kollias S (2006) Uncertainty and the semantic web. IEEE Intell Syst 21(5):84–87. doi: 10.1109/MIS.2006.105 CrossRefGoogle Scholar
  13. Straccia U (2001) Reasoning within fuzzy description logics. J Artif Intell Res 14Google Scholar
  14. Straccia U (2005) A fuzzy description logic for the semantic web, Chap 4. In: Fuzzy logic and the semantic web, capturing intelligence. Elsevier, New York, pp 167–181Google Scholar
  15. Tho Q, Hui S, Fong A, Cao TH (2006) Automatic fuzzy ontology generation for semantic web. IEEE Trans Knowl Data Eng 18(6):842–856. doi: 10.1109/TKDE.2006.87 CrossRefGoogle Scholar
  16. Wlodarczyk T, O’Connor M, Rong C, Musen M (2011) Swrl-f—a fuzzy logic extension of the semantic web rule language 654:97–100Google Scholar
  17. Zhai J, Luan W, Liang Y, Jiang J (2008) Using ontology to represent fuzzy knowledge for fuzzy systems. In: Proceedings of the 2008 fifth international conference on fuzzy systems and knowledge discovery, vol 03, FSKD ’08, pp 673–677Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. De Maio
    • 1
    Email author
  • G. Fenza
    • 1
  • D. Furno
    • 1
  • V. Loia
    • 1
  • S. Senatore
    • 1
  1. 1.CORISA (Consorzio Ricerca Sistemi ad Agenti), Dipartimento di InformaticaUniversitá degli Studi di SalernoFisciano (SA)Italy

Personalised recommendations