Advertisement

Soft Computing

, Volume 16, Issue 4, pp 659–666 | Cite as

A generalization of the Chebyshev type inequalities for Sugeno integrals

  • Hamzeh Agahi
  • Adel Mohammadpour
  • S. Mansour Vaezpour
Original Paper

Abstract

In this paper, we give a generalization of the Chebyshev type inequalities for Sugeno integral with respect to non-additive measures. The main results of this paper generalize most of the inequalities for Sugeno integral obtained by many researchers. Also, some conclusions are drawn and some problems for further investigations are given.

Keywords

Nonadditive measure Sugeno integral Chebyshev’s inequality Minkowski’s inequality Hölder’s inequality 

Notes

Acknowledgments

The work on this paper was partially supported by the Fuzzy Systems and Applications Center of Excellence, Shahid Bahonar University of Kerman, Kerman, Iran. Our thanks go to anonymous referees who helped to improve the original version of our paper.

References

  1. Agahi H, Yaghoobi MA (2010) A Minkowski type inequality for fuzzy integrals. J Uncertain Syst 4(3):187–194Google Scholar
  2. Agahi H, Mesiar R, Ouyang Y (2010) General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst 161:708–715MathSciNetMATHCrossRefGoogle Scholar
  3. Dubois D, Prade H, Sabbadin R (1998) Qualitative decision theory with Sugeno integrals. In: Proceedings of UAI’98, pp 121–128Google Scholar
  4. Flores-Franulič A, Román-Flores H (2007) A Chebyshev type inequality for fuzzy integrals. Appl Math Comput 190:1178–1184MathSciNetMATHCrossRefGoogle Scholar
  5. Klement EP, Mesiar R, Pap E (2000) Triangular norms, trends in Logic. Studia Logica Library, vol 8. Kluwer Academic Publishers, DodrechtGoogle Scholar
  6. Mesiar R, Mesiarová A (2008) Fuzzy integrals and linearity. Int J Approx Reason 47:352–358MATHCrossRefGoogle Scholar
  7. Mesiar R, Ouyang Y (2009) general Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets Syst 160:58–64MathSciNetMATHCrossRefGoogle Scholar
  8. Ouyang Y, Fang J (2008) Sugeno integral of monotone functions based on Lebesgue measure. Comput Math Appl 56:367–374MathSciNetMATHCrossRefGoogle Scholar
  9. Ouyang Y, Fang J, Wang L (2008) Fuzzy Chebyshev type inequality. Int J Approx Reason 48:829–835MathSciNetMATHCrossRefGoogle Scholar
  10. Ouyang Y, Mesiar R (2009a) On the Chebyshev type inequality for seminormed fuzzy integral. Appl Math Lett 22:1810–1815MathSciNetMATHCrossRefGoogle Scholar
  11. Ouyang Y, Mesiar R (2009b) Sugeno integral and the comonotone commuting property, Int J Uncertain. Fuzziness and Knowledge-Based Systems 17: 465–480MathSciNetMATHCrossRefGoogle Scholar
  12. Ouyang Y, Mesiar R, Li J (2009) On the comonotonic-\(\star\) -property for Sugeno integral. Appl Math Comput 211:450–458MathSciNetMATHCrossRefGoogle Scholar
  13. Ouyang Y, Mesiar R, Agahi H (2010) An inequality related to Minkowski type for Sugeno integrals. Inf Sci 180:2793–2801MathSciNetMATHCrossRefGoogle Scholar
  14. Pap E (1995) Null-additive set functions. Kluwer, DordrechtMATHGoogle Scholar
  15. Ralescu D, Adams G (1980) The fuzzy integral. J Math Anal Appl 75:562–570MathSciNetMATHCrossRefGoogle Scholar
  16. Román-Flores H, Flores-Franulič A, Chalco-Cano Y (2007) The fuzzy integral for monotone functions. Appl Math Comput 185:492–498MathSciNetMATHCrossRefGoogle Scholar
  17. Román-Flores H, Flores-Franulič A, Chalco-Cano Y (2008a) A convolution type inequality for fuzzy integrals. Appl Math Comput 195:94–99MathSciNetMATHCrossRefGoogle Scholar
  18. Román-Flores H, Flores-Franulič A, Chalco-Cano Y (2008b) A Hardy type inequality for fuzzy integrals. Appl Math Comput 204:178–183MathSciNetMATHCrossRefGoogle Scholar
  19. Suárez García F, Gil Álvarez P (1986) Two families of fuzzy integrals. Fuzzy Sets Syst 18: 67–81MATHCrossRefGoogle Scholar
  20. Sugeno M (1974) Theory of fuzzy integrals and its applications, PhD thesis. Tokyo Institute of TechnologyGoogle Scholar
  21. Wang Z, Klir G (1992) Fuzzy measure theory. Plenum Press. New YorkMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hamzeh Agahi
    • 1
    • 2
  • Adel Mohammadpour
    • 1
  • S. Mansour Vaezpour
    • 1
  1. 1.Department of Mathematics and Computer ScienceAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  2. 2.Statistical Research and Training Center (SRTC)TehranIran

Personalised recommendations