Soft Computing

, Volume 15, Issue 12, pp 2303–2318 | Cite as

Multiobjective genetic fuzzy rule selection of single granularity-based fuzzy classification rules and its interaction with the lateral tuning of membership functions

  • Rafael Alcalá
  • Yusuke Nojima
  • Francisco Herrera
  • Hisao Ishibuchi
Focus

Abstract

Multiobjective genetic fuzzy rule selection is based on the generation of a set of candidate fuzzy classification rules using a preestablished granularity or multiple fuzzy partitions with different granularities for each attribute. Then, a multiobjective evolutionary algorithm is applied to perform fuzzy rule selection. Since using multiple granularities for the same attribute has been sometimes pointed out as to involve a potential interpretability loss, a mechanism to specify appropriate single granularities at the rule extraction stage has been proposed to avoid it but maintaining or even improving the classification performance. In this work, we perform a statistical study on this proposal and we extend it by combining the single granularity-based approach with a lateral tuning of the membership functions, i.e., complete contexts learning. In this way, we analyze in depth the importance of determining the appropriate contexts for learning fuzzy classifiers. To this end, we will compare the single granularity-based approach with the use of multiple granularities with and without tuning. The results show that the performance of the obtained classifiers can be even improved by obtaining the appropriate variable contexts, i.e., appropriate granularities and membership function parameters.

Keywords

Fuzzy rule-based classifiers Multiobjective evolutionary algorithms Granularity learning Lateral tuning of membership functions 

References

  1. Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI (1996) Fast discovery of association rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (eds) Advances in knowledge discovery and data mining. AAAI, Menlo Park, pp 307–328Google Scholar
  2. Alcalá R, Cano JR, Cordón O, Herrera F, Villar P, Zwir I (2003) Linguistic modeling with hierarchical systems of weighted linguistic rules. Int J Approx Reason 32(2–3):187–215MATHCrossRefGoogle Scholar
  3. Alcalá R, Alcalá-Fdez J, Casillas J, Cordón O, Herrera F (2006) Hybrid learning models to get the interpretability–accuracy trade-off in fuzzy modeling. Soft Comput 10(9):717–734CrossRefGoogle Scholar
  4. Alcalá R, Alcalá-Fdez J, Herrera F (2007a) A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans Fuzzy Syst 15(4):616–635CrossRefGoogle Scholar
  5. Alcalá R, Gacto MJ, Herrera F, Alcalá-Fdez J (2007b) A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems. Int J Uncertain Fuzziness Knowl Based Syst 15(5):539–557MATHCrossRefGoogle Scholar
  6. Alcalá R, Ducange P, Herrera F, Lazzerini B, Marcelloni F (2009a) A multi-objective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy rule-based systems. IEEE Trans Fuzzy Syst 17(5):1106–1122CrossRefGoogle Scholar
  7. Alcalá R, Nojima Y, Herrera F, Ishibuchi H (2009b) Generating single granularity-based fuzzy classification rules for multiobjective genetic fuzzy rule selection. In: Proceedings of the 2009 IEEE International Conference on Fuzzy Systems, Jeju (Korea), pp 1718–1723Google Scholar
  8. Alcalá-Fdez J, Sánchez L, García S, del Jesus M, Ventura S, Garrell J, Otero J, Romero C, Bacardit J, Rivas V, Fernández J, Herrera F (2009) KEEL: a software tool to assess evolutionary algorithms to data mining problems. Soft Comput 13(3):307–318CrossRefGoogle Scholar
  9. Asuncion A, Newman DJ (2007) UCI machine learning repository. http://www.ics.uci.edu/∼mlearn/MLRepository.html
  10. Babuška R, Oosterhoff J, Oudshoorn A, Bruijn PM (2002) Fuzzy self-tuning PI control of pH in fermentation. Eng Appl Artif Intell 15(1):3–15CrossRefGoogle Scholar
  11. Bonissone PP, Khedar PS, Chen YT (1996) Genetic algorithms for automated tuning of fuzzy controllers, a transportation aplication. In: Proceedings of the Fifth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’96). Nueva Orleans, LA, EE. UU, pp 674–680Google Scholar
  12. Botta A, Lazzerini B, Marcelloni F, Stefanescu DC (2009) Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. Soft Comput 13(5):437–449CrossRefGoogle Scholar
  13. Casillas J, Cordón O, Herrera F, Magdalena L (eds) (2003) Interpretability issues in fuzzy modeling, Studies in Fuzziness and Soft Computing, vol 128. Springer, HeidelbergGoogle Scholar
  14. Cococcioni M, Ducange P, Lazzerini B, Marcelloni F (2007) A pareto-based multi-objective evolutionary approach to the identification of mamdani fuzzy systems. Soft Comput 11:1013–1031CrossRefGoogle Scholar
  15. Coello CA, Veldhuizen DAV, Lamont GB (eds) (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, BostonGoogle Scholar
  16. Cordón O, Herrera F (1997) A three-stage evolutionary process for learning descriptive and approximative fuzzy logic controller knowledge bases from examples. Int J Approx Reason 17(4):369–407MATHCrossRefGoogle Scholar
  17. Cordón O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systemes. Evolutionary tuning and learning of fuzzy knowledge bases. In: Advances in fuzzy systems—applications and theory, vol 19. World Scientific, SingaporeGoogle Scholar
  18. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New YorkMATHGoogle Scholar
  19. Deb K, Pratab A, Agrawal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  20. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATHGoogle Scholar
  21. Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval-schemata. Found Genet Algorithms 2:187–202Google Scholar
  22. Gacto MJ, Alcalá R, Herrera F (2010) Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Trans Fuzzy Syst 18(3):515–531CrossRefGoogle Scholar
  23. Gacto MJ, Alcalá R, Herrera F (2009) Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems. Soft Comput 13(5):419–436CrossRefGoogle Scholar
  24. García S, Fernández A, Luengo J, Herrera F (2009) A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput 13(10):959–977CrossRefGoogle Scholar
  25. García S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 9:2677–2694Google Scholar
  26. García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15(6):617–644MATHCrossRefGoogle Scholar
  27. Gürocak HB (1999) A genetic-algorithm-based method for tuning fuzzy logic controllers. Fuzzy Sets Syst 108(1):39–47MATHCrossRefGoogle Scholar
  28. Herrera F, Lozano M, Verdegay JL (1995) Tuning fuzzy logic controllers by genetic algorithms. Int J Approx Reason 12:299–315MathSciNetMATHCrossRefGoogle Scholar
  29. Herrera F, Martínez L (2000) A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 8(6):746–752CrossRefGoogle Scholar
  30. Ishibuchi H, Ishibuchi H, Nakashima T, Nakashima T (2000) Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans Fuzzy Syst 9:506–515CrossRefGoogle Scholar
  31. Ishibuchi H, Murata T, Turksen IB (1995) Selecting linguistic classification rules by two-objective genetic algorithms. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernatics. Vancouver, Canada, pp 1410–1415Google Scholar
  32. Ishibuchi H, Murata T, Türksen IB (1997) Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst 89(2):135–150CrossRefGoogle Scholar
  33. Ishibuchi H, Nakashima T, Nii M (2004) Classification and modeling with linguistic information granules: advanced approaches to linguistic data mining. Springer, BerlinGoogle Scholar
  34. Ishibuchi H, Nojima Y (2007) Analysis of interpretability–accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J Approx Reason 44(1):4–31MathSciNetMATHCrossRefGoogle Scholar
  35. Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst 141(1):59–88MathSciNetMATHCrossRefGoogle Scholar
  36. Ishibuchi H, Yamamoto T (2005) Rule weight specification in fuzzy rule-based classification systems. IEEE Trans Fuzzy Syst 13:428–435CrossRefGoogle Scholar
  37. Jang JSR (1993) ANFIS: Adaptive network based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–684MathSciNetCrossRefGoogle Scholar
  38. Karr C (1991) Genetic algorithms for fuzzy controllers. AI Expert 6(2):26–33Google Scholar
  39. Mamdani E (1974) Application of fuzzy algorithms for control of simple dynamic plant. In: Proc. IEEE, vol 121, pp 1585–1588Google Scholar
  40. Mamdani E, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7:1–13MATHCrossRefGoogle Scholar
  41. Nojima Y, Ishibuchi H, Kuwajima I (2009) Parallel distributed genetic fuzzy rule selection. Soft Comput 13(5):511–519CrossRefGoogle Scholar
  42. Pulkkinen P, Koivisto H (2008) Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms. Int J Approx Reason 48:526–543CrossRefGoogle Scholar
  43. Pulkkinen P, Koivisto H (2010) A dynamically constrained multiobjective genetic fuzzy system for regression problems. IEEE Trans Fuzzy Syst 18(1):161–177CrossRefGoogle Scholar
  44. Sánchez L, Otero J, Couso I (2009) Obtaining linguistic fuzzy rule-based regression models from imprecise data with multiobjective genetic algorithms. Soft Comput 13(5):467–479MATHCrossRefGoogle Scholar
  45. Sheskin D (2003) Handbook of parametric and nonparametric statistical procedures. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  46. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83CrossRefGoogle Scholar
  47. Zar J (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  48. Zheng L (1992) A practical guide to tune proportional and integral (pi) like fuzzy controllers. In: Proceedings of the First IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’92). San Diego, pp 633–640Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rafael Alcalá
    • 1
  • Yusuke Nojima
    • 2
  • Francisco Herrera
    • 1
  • Hisao Ishibuchi
    • 2
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.Department of Computer Science and Intelligent SystemsOsaka Prefecture UniversitySakaiJapan

Personalised recommendations