Soft Computing

, Volume 15, Issue 12, pp 2415–2434 | Cite as

Performance evaluation of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning

Focus

Abstract

Recently, evolutionary multiobjective optimization (EMO) algorithms have been utilized for the design of accurate and interpretable fuzzy rule-based systems. This research area is often referred to as multiobjective genetic fuzzy systems (MoGFS), where EMO algorithms are used to search for non-dominated fuzzy rule-based systems with respect to their accuracy and interpretability. In this paper, we examine the ability of EMO algorithms to efficiently search for Pareto optimal or near Pareto optimal fuzzy rule-based systems for classification problems. We use NSGA-II (elitist non-dominated sorting genetic algorithm), its variants, and MOEA/D (multiobjective evolutionary algorithm based on decomposition) in our multiobjective fuzzy genetics-based machine learning (MoFGBML) algorithm. Classification performance of obtained fuzzy rule-based systems by each EMO algorithm is evaluated for training data and test data under various settings of the available computation load and the granularity of fuzzy partitions. Experimental results in this paper suggest that reported classification performance of MoGFS in the literature can be further improved using more computation load, more efficient EMO algorithms, and/or more antecedent fuzzy sets from finer fuzzy partitions.

Keywords

Fuzzy rule-based classification Genetic algorithms Genetics-based machine learning Multiobjective machine learning Evolutionary multiobjective optimization 

References

  1. Abbass HA (2003) Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Comput 15(11):2705–2726MATHCrossRefGoogle Scholar
  2. Alcala R, Ducange P, Herrera F, Lazzerini B, Marcelloni F (2009) A multiobjective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy-rule-based systems. IEEE Trans Fuzzy Syst 17(5):1106–1122CrossRefGoogle Scholar
  3. Alcala-Fdez J, Sanchez L, Garcia S, del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernandez JC, Herrera F (2009) KEEL: a software tool to assess evolutionary algorithms to data mining problems. Soft Comput 13(3):307–318CrossRefGoogle Scholar
  4. Alonso JM, Magdalena L (2009) A conceptual framework for understanding a fuzzy system. In: Proceedings of IFSA-EUSFLAT 2009, pp 119–124Google Scholar
  5. Baraldi P, Pedroni N, Zio E (2009) Application of a niched Pareto genetic algorithm for selecting features for nuclear transients classification. Int J Intell Syst 24(2):118–151MATHCrossRefGoogle Scholar
  6. Coello CAC, Dehuri S, Ghosh S (eds) (2009) Swarm intelligence for multi-objective problems in data mining. Springer, BerlinGoogle Scholar
  7. Coello CAC, van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, BostonMATHGoogle Scholar
  8. Cococcioni M (2009) The evolutionary multiobjective optimization of fuzzy rule-based systems bibliography page. http://www2.ing.unipi.it/∼r000439/emofrbss.html
  9. Cordon O, del Jesus MJ, Herrera F (1999) A proposal on reasoning methods in fuzzy rule-based classification systems. Int J Approx Reason 20(1):21–45Google Scholar
  10. Cordon O, Gomide F, Herrera F, Hoffmann F, Magdalena L (2004) Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst 141(1):5–31MathSciNetMATHCrossRefGoogle Scholar
  11. Cordon O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systems. World Scientific, SingaporeMATHGoogle Scholar
  12. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChichesterMATHGoogle Scholar
  13. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197CrossRefGoogle Scholar
  14. Ducange P, Lazzerini B, Marcelloni F (2010) Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets. Soft Comput 14(7):713–728CrossRefGoogle Scholar
  15. Fonseca CM, Fleming PJ (1996) On the performance assessment and comparison of stochastic multiobjective optimizers. Lect Notes Comput Sci 1141:584–593CrossRefGoogle Scholar
  16. Gacto MJ, Alcala R, Herrera F (2009) Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems. Soft Comput 13(5):419–436CrossRefGoogle Scholar
  17. Ghosh A, Dehuri KS, Ghosh S (eds) (2008) Multi-objective evolutionary algorithms for knowledge discovery from databases. Springer, BerlinGoogle Scholar
  18. Gonzalez J, Rojas I, Ortega J, Pomares H, Fernandez J, Diaz AF (2003) Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Trans Neural Netw 14(6):1478–1495CrossRefGoogle Scholar
  19. Herrera F (2005) Genetic fuzzy systems: status, critical considerations and future directions. Int J Comput Intell Res 1(1):59–67Google Scholar
  20. Herrera F (2008) Genetic fuzzy systems: taxonomy, current research trends and prospects. Evolut Intell 1(1):27–46MathSciNetCrossRefGoogle Scholar
  21. Ishibuchi H (2007) Multiobjective genetic fuzzy systems: review and future research directions. In: Proceedings of 2007 IEEE international conference on fuzzy systems, pp 913–918Google Scholar
  22. Ishibuchi H, Doi T, Nojima Y (2006) Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms. Lect Notes Comput Sci 4193:493–502CrossRefGoogle Scholar
  23. Ishibuchi H, Murata T, Turksen IB (1995a) Selecting linguistic classification rules by two-objective genetic algorithms. In: Proceedings of 1995 IEEE international conference on systems, man and cybernetics, pp 1410–1415Google Scholar
  24. Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H (1995b) Selecting fuzzy if–then rules for classification problems using genetic algorithms. IEEE Trans Fuzzy Syst 3(3):260–270CrossRefGoogle Scholar
  25. Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst 89(2):135–150CrossRefGoogle Scholar
  26. Ishibuchi H, Nakashima T, Murata T (1999) Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans Syst Man Cybern Part B Cybern 29(5):601–618CrossRefGoogle Scholar
  27. Ishibuchi H, Narukawa K, Tsukamoto N, Nojima Y (2008) An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization. Eur J Oper Res 188(1):57–75MATHCrossRefGoogle Scholar
  28. Ishibuchi H, Nojima Y (2007a) Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J Approx Reason 44(1):4–31MathSciNetMATHCrossRefGoogle Scholar
  29. Ishibuchi H, Nojima Y (2007b) Optimization of scalarizing functions through evolutionary multiobjective optimization. Lect Notes Comput Sci 4403:51–65CrossRefGoogle Scholar
  30. Ishibuchi H, Nozaki K, Tanaka H (1992) Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets Syst 52(1):21–32CrossRefGoogle Scholar
  31. Ishibuchi H, Yamamoto T (2003) Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers. Lect Notes Comput Sci 2723:1077–1088CrossRefGoogle Scholar
  32. Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst 141(1):59–88MathSciNetMATHCrossRefGoogle Scholar
  33. Ishibuchi H, Yamamoto T (2005) Rule weight specification in fuzzy rule-based classification systems. IEEE Trans Fuzzy Syst 13(4):428–435CrossRefGoogle Scholar
  34. Ishibuchi H, Yamamoto T, Nakashima T (2001) Fuzzy data mining: effect of fuzzy discretization. In: Proceedings of 2001 IEEE international conference on data mining, pp 241–248Google Scholar
  35. Jaszkiewicz A (2002) On the performance of multiple-objective genetic local search on the 0/1 knapsack problem—a comparative experiment. IEEE Trans Evolut Comput 6(4):402–412CrossRefGoogle Scholar
  36. Jaszkiewicz A (2004) On the computational efficiency of multiple objective metaheuristics: the knapsack problem case study. Eur J Oper Res 158(2):418–433MathSciNetMATHCrossRefGoogle Scholar
  37. Jin Y (2000) Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Trans Fuzzy Syst 8(2):212–221CrossRefGoogle Scholar
  38. Jin J (ed) (2006) Multi-objective machine learning. Springer, BerlinGoogle Scholar
  39. Jin Y, Sendhoff B (2008) Pareto-based multiobjective machine learning: an overview and case studies. IEEE Trans Syst Man Cybern Part C 38(3):397–415CrossRefGoogle Scholar
  40. Murata T, Ishibuchi H, Gen M (2001) Specification of genetic search directions in cellular multi-objective genetic algorithm. Lect Notes Comput Sci 1993:82–95MathSciNetCrossRefGoogle Scholar
  41. Oliveira LS, Morita M, Sabourin R, Bortolozzi F (2005) Multi-objective genetic algorithms to create ensemble of classifiers. Lect Notes Comput Sci 3410:592–606CrossRefGoogle Scholar
  42. Pulkkinen P, Koivisto H (2008) Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms. Int J Approx Reason 48(2):526–543CrossRefGoogle Scholar
  43. Pulkkinen P, Koivisto H (2010) A dynamically constrained multiobjective genetic fuzzy system for regression problems. IEEE Trans Fuzzy Syst 18(1):161–177CrossRefGoogle Scholar
  44. Rodriguez-Vazquez K, Fleming PJ (1998) Multi-objective genetic programming for nonlinear system identification. Electron Lett 34(9):930–931CrossRefGoogle Scholar
  45. Rodriguez-Vazquez K, Fonseca CM, Fleming PJ (2004) Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming. IEEE Trans Syst Man Cybern Part A 34(4):531–545CrossRefGoogle Scholar
  46. Roubos H, Setnes M (2001) Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans Fuzzy Syst 9(4):516–524CrossRefGoogle Scholar
  47. Sato H, Aguirre HE, Tanaka K (2007) Controlling dominance area of solutions and its impact on the performance of MOEAs. Lect Notes Comput Sci 4403:5–20CrossRefGoogle Scholar
  48. Setnes M, Roubos H (2000) GA-fuzzy modeling and classification: complexity and performance. IEEE Trans Fuzzy Syst 8(5):509–522CrossRefGoogle Scholar
  49. Setzkorn C, Paton RC (2005) On the use of multi-objective evolutionary algorithms for the induction of fuzzy classification rule systems. Biosystems 81(2):101–112CrossRefGoogle Scholar
  50. Tan KC, Khor EF, Lee TH (2005) Multiobjective evolutionary algorithms and applications. Springer, BerlinMATHGoogle Scholar
  51. Valente de Oliveira J (1999) Semantic constraints for membership function optimization. IEEE Trans Syst Man Cybern Part A 29(1):128–138CrossRefGoogle Scholar
  52. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6):712–731CrossRefGoogle Scholar
  53. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. TIK-Report 103. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), ZurichGoogle Scholar
  54. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evolut Comput 3(4):257–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hisao Ishibuchi
    • 1
  • Yusuke Nakashima
    • 1
  • Yusuke Nojima
    • 1
  1. 1.Department of Computer Science and Intelligent SystemsOsaka Prefecture UniversitySakai, OsakaJapan

Personalised recommendations