Soft Computing

, Volume 15, Issue 5, pp 975–990 | Cite as

Optimization algorithms for large-scale real-world instances of the frequency assignment problem

  • Francisco Luna
  • César Estébanez
  • Coromoto León
  • José M. Chaves-González
  • Antonio J. Nebro
  • Ricardo Aler
  • Carlos Segura
  • Miguel A. Vega-Rodríguez
  • Enrique Alba
  • José M. Valls
  • Gara Miranda
  • Juan A. Gómez-Pulido
Original Paper

Abstract

Nowadays, mobile communications are experiencing a strong growth, being more and more indispensable. One of the key issues in the design of mobile networks is the frequency assignment problem (FAP). This problem is crucial at present and will remain important in the foreseeable future. Real-world instances of FAP typically involve very large networks, which can be handled only by heuristic methods. In the present work, we are interested in optimizing frequency assignments for problems described in a mathematical formalism that incorporates actual interference information, measured directly on the field, as is done in current GSM networks. To achieve this goal, a range of metaheuristics have been designed, adapted, and rigourously compared on two actual GSM networks modeled according to the latter formalism. To generate quickly and reliably high-quality solutions, all metaheuristics combine their global search capabilities with a local-search method specially tailored for this domain. The experiments and statistical tests show that in general, all metaheuristics are able to improve upon results published in previous studies, but two of the metaheuristics emerge as the best performers: a population-based algorithm (Scatter Search) and a trajectory based (1+1) Evolutionary Algorithm. Finally, the analysis of the frequency plans obtained offers insight about how the interference cost is reduced in the optimal plans.

Keywords

Frequency assignment problem Large-scale real-world instances Metaheuristics Optimal design 

References

  1. Aardal KI, van Hoesel SPM, Koster AMCA, Mannino C, Sassano A (2007) Models and solution techniques for frequency assignment problems. Ann Oper Res 153(1):79–129CrossRefMATHMathSciNetGoogle Scholar
  2. Alabau M, Idoumghar L, Schott R (2001) New hybrid genetic algorithms for the frequency assignment problem. In: Proceedings of the 13th international conference on tools with artificial intelligence, pp 136–142Google Scholar
  3. Alabau M, Idoumghar L, Schott R (2002) New hybrid genetic algorithms for the frequency assignment problem. IEEE Trans Broad 48(1):27–34CrossRefGoogle Scholar
  4. Amaldi E, Capone A, Malucelli F, Mannino C (2006) Optimization problems and models for planning cellular networks. In: Handbook of optimization in telecommunications. Springer, pp 917–939Google Scholar
  5. Avenali A, Mannino C, Sassano A (2002) Minimizing the span of d-walks to compute optimum frequency assignments. Math Prog (A) 91:357–374CrossRefMATHMathSciNetGoogle Scholar
  6. Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, USAGoogle Scholar
  7. Bjorklund P, Varbrand P, Yuan D (2005) Optimized planning of frequency hopping in cellular networks. Comput Oper Res 32(1):169–186CrossRefMathSciNetGoogle Scholar
  8. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308CrossRefGoogle Scholar
  9. Blum C, Dorigo M (2004) The hyper-cube framework for ant colony optimization. IEEE Trans Syst Man Cybern Part B 34(2):1161–1172CrossRefGoogle Scholar
  10. Chaves-González JM, Vega-Rodríguez MA, Domínguez-González D, Gómez-Pulido JA, Sánchez-Pérez JM (2008a) SS vs PBIL to solve a real-world frequency assignment problem in GSM networks. In: Applications of evolutionary Computing (EvoCOMNET’08). LNCS 4974, pp 21–30Google Scholar
  11. Chaves-González JM, Domínguez-González D, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2008b) Parallelizing pbil for solving a real-world frequency assignment problem in gsm networks. In: 16th Euromicro conference on parallel, distributed and network-based processing (PDP 2008), pp 391–398Google Scholar
  12. Colombo G (2006) A genetic algorithm for frequency assignment with problem decomposition. Int J Mobile Netw Des Innov 1(2):102–112CrossRefGoogle Scholar
  13. Demšar J (2006) Statistical comparison of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetGoogle Scholar
  14. Dorigo M, Stützle T (2004) Ant colony optimization. MIT press, CambridgeCrossRefMATHGoogle Scholar
  15. Eisenblätter A (2001) Frequency assignment in GSM networks: models, heuristics, and lower bounds. PhD thesis, Technische Universität BerlinGoogle Scholar
  16. Eisenblätter A, Grötschel M, Koster AMCA (2002) Frequency planning and ramifications of coloring. Discuss Math Graph Theory 22(1):51–88MATHMathSciNetGoogle Scholar
  17. Feo T, Resende M (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–133CrossRefMATHMathSciNetGoogle Scholar
  18. Fischetti M, Lepsch C, Minerva G, Romanin-Jacur G, Toto E (2000) Frequency assignment in mobile radio systems using branch-and-cut techniques. Eur J Oper Res 123(2):241–255CrossRefMATHGoogle Scholar
  19. Furuskar A, Naslund J, Olofsson H (1999) EDGE—enhanced data rates for GSM and TDMA/136 evolution. Ericsson Review (1)Google Scholar
  20. Glover F (1998) A template for scatter search and path relinking. In: AE ’97: selected papers from the third European conference on artificial evolution, London, UK, Springer, pp 3–54Google Scholar
  21. Glover FW, Kochenberger GA (2003) Handbook of metaheuristics. KluwerGoogle Scholar
  22. Gomes FC, Pardalos P, Oliveira CS, Resende MGC (2001) Reactive GRASP with path relinking for channel assignment in mobile phone networks. In: Proceedings of the 5th international workshop on discrete algorithms and methods for mobile computing and communications (DIALM’01), pp 60–67Google Scholar
  23. Granbohm H, Wiklund J (1999) GPRS—general packet radio service. Ericsson Review (1)Google Scholar
  24. Greff JY, Idoumghar L, Schott R (2004) Application of markov decision processes to the frequency assignment problem. Appl Artif Intell 18(8):761–773CrossRefGoogle Scholar
  25. Hale WK (1980) Frequency assignment: theory and applications. Proc IEEE 68(12):1497–1514CrossRefGoogle Scholar
  26. Hamiez HP, Hao JK (2002) Scatter search for graph coloring. In: Artificial evolution. LNCS 2310, pp 195–213Google Scholar
  27. Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. WileyGoogle Scholar
  28. Idoumghar L, Schott R (2006) A new hybrid GA-MDP algorithm for the frequency assignment problem. In: Proceedings of the 18th IEEE international conference on tools with artificial intelligence (ICTAI’06), pp 18–25Google Scholar
  29. Jaumard B, Marcotte O, Meyer C (1999) Mathematical models and exact methods for channel assignment in cellular networks. In: Telecommunications network planning. Kluwer, pp 239–256Google Scholar
  30. Kuurne AMJ (2002) On GSM mobile measurement based interference matrix generation. In: IEEE 55th vehicular technology conference, VTC Spring 2002, pp 1965–1969Google Scholar
  31. Kim SS, Smith AE, Lee JH (2007) A memetic algorithm for channel assignment in wireless FDMA systems. Comput Oper Res 34:1842–1856CrossRefMATHGoogle Scholar
  32. Laguna M, Hossell KP, Marti R (2002) Scatter search: methodology and implementation in C. Kluwer Academic Publishers, NorwellGoogle Scholar
  33. Lau TL, Tsang EPK (2001) Guided genetic algorithm and its application to radio link frequency assignment problems. Constraints 6(4):373–398CrossRefMATHGoogle Scholar
  34. Leese R, Hurley S (2002) Methods and algorithms for radio channel assignment. In: Oxford lecture series in mathematics and its applications. Oxford University PressGoogle Scholar
  35. Liu X, Pardalos PM, Rajasekaran S, Resende MGC (2000) Dimacs series on discrete mathematics and theoretical computer science 52:195–201Google Scholar
  36. Luna F, Alba E, Nebro AJ (2005) Parallel heterogeneous metaheuristics. In Alba E (ed) Parallel metaheuristics. Wiley, pp 395–422Google Scholar
  37. Luna F, Blum C, Alba E, Nebro AJ (2007a) ACO vs EAs for solving a real-world frequency assignment problem in GSM networks. In: Genetic and evolutionary computation conference (GECCO 2007), pp 94–101Google Scholar
  38. Luna F, Alba E, Nebro AJ, Pedraza S (2007b) Evolutionary algorithms for real-world instances of the automatic frequency planning problem in GSM networks. In: Seventh European conference on evolutionary computation in combinatorial optimization (EVOCOP 2007). Volume 4446 of LNCS, pp 108–120Google Scholar
  39. Luna F, Estébanez C, León C, Chaves-González JM, Alba E, Aler R, Segura C, Vega-Rodríguez MA, Nebro AJ, Valls JM, Miranda G, Gómez-Pulido JA (2008) Metaheuristics for solving a real-world frequency assignment problem in gsm networks. In: Conference on genetic and evolutionary computation (GECCO 2008), pp 1579–1586Google Scholar
  40. Mabed H, Caminada A, Hao JK, Renaud D (2002) A dynamic traffic model for frequency assignment. In: Parallel problem solving from nature (PPSN VII). LNCS 2439, pp 779–788Google Scholar
  41. Mannino C, Sassano A (2003) An enumerative algorithm for the frequency assignment problem. Discret Appl Math 129:155–169CrossRefMATHMathSciNetGoogle Scholar
  42. Mannino C, Oriolo G, Ricci F, Chandran S (2007) The stable set problem and the thinness of a graph. Oper Res Lett 35(1):1–9CrossRefMATHMathSciNetGoogle Scholar
  43. Martí R (2003) Handbook of metaheuristics. pp 355–368Google Scholar
  44. Martí R, Laguna M, Glover F (2006) Principles of scatter search. Eur J Oper Res 169(2):359–372CrossRefMATHGoogle Scholar
  45. Matsui S, Watanabe I, Tokoro KI (2003) An efficient hybrid genetic algorithm for a fixed channel assignment problem with limited bandwidth. In: Genetic and evolutionary computation conference (GECCO 2003). LNCS 2724, pp 2240–2251Google Scholar
  46. Matsui S, Watanabe I, Tokoro KI (2005) Application of the parameter-free genetic algorithm to the fixed channel assignment problem. Syst Comput Jpn 36(4):71–81CrossRefGoogle Scholar
  47. Metzger BH (1970) Spectrum management technique. In: 38th National ORSA MeetingGoogle Scholar
  48. Mishra AR (2004) Radio network planning and optimisation. In: Fundamentals of cellular network planning and optimisation: 2G/2.5G/3G... Evolution to 4G. Wiley, pp 21–54Google Scholar
  49. Mouly M, Paulet MB (1992) The GSM system for mobile communications. Mouly et Paulet, PalaiseauGoogle Scholar
  50. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing. Cambridge University PressGoogle Scholar
  51. Raidl G (2006) A unified view on hybrid metaheuristics. In: Hybrid metaheuristics (HM 2006). LNCS 4030, pp 1–12Google Scholar
  52. Rapeli J (1995) UMTS: targets, system concept, and standardization in a global framework. IEEE Pers Commun 2(1):30–37CrossRefGoogle Scholar
  53. Raymond A, Lyandres V, Santiago RC (2003) On a guided genetic algorithm for frequency assignment in non-homogeneous cellular networks. In: 2003 IEEE international symposium on electromagnetic compatibility (EMC ’03), pp 660–663Google Scholar
  54. Salcedo-Sanz S, Bousoño-Calzón C (2005) A portable and scalable algorithm for a class of constrained combinatorial optimization problems. Comput Oper Res 32:2671–2687CrossRefMATHMathSciNetGoogle Scholar
  55. Simon MK, Alouini MS (2005) Digital communication over fading channels: a unified approach to performance analysis. WileyGoogle Scholar
  56. Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures. CRC PressGoogle Scholar
  57. Talbi E (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8(5):541–564CrossRefGoogle Scholar
  58. Tiourine SR, Hurkens CAJ, Lenstra JK (2000) Local search algorithms for the radio link frequency assignment problem. Telecommun Syst 13(2–4):293–314CrossRefMATHGoogle Scholar
  59. Valenzuela C (2001) A study of permutation operators for minimum span frequency assignment using an order based representation. J Heuristics 7:5–21CrossRefMATHGoogle Scholar
  60. Voudouris C, Tsang E (1999) Guided local search. Eur J Oper Res 113(2):449–499CrossRefGoogle Scholar
  61. Walke BH (2002) Mobile radio networks: Networking, protocols and traffic performance. WileyGoogle Scholar
  62. Weinberg B, Bachelet V, Talbi EG (2001) A co-evolutionist meta-heuristic for the assignment of the frequencies in cellular networks. In: EvoWorkshop 2001. LNCS 2037, pp 140–149Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Francisco Luna
    • 1
  • César Estébanez
    • 2
  • Coromoto León
    • 3
  • José M. Chaves-González
    • 4
  • Antonio J. Nebro
    • 1
  • Ricardo Aler
    • 2
  • Carlos Segura
    • 3
  • Miguel A. Vega-Rodríguez
    • 4
  • Enrique Alba
    • 1
  • José M. Valls
    • 2
  • Gara Miranda
    • 3
  • Juan A. Gómez-Pulido
    • 4
  1. 1.Universidad de MálagaMalagaSpain
  2. 2.Universidad Carlos III de MadridMadridSpain
  3. 3.Universidad de La LagunaTenerifeSpain
  4. 4.Universidad de ExtremaduraBadajozSpain

Personalised recommendations