Advertisement

Soft Computing

, Volume 15, Issue 11, pp 2257–2273 | Cite as

Path relinking for large-scale global optimization

  • Abraham Duarte
  • Rafael Martí
  • Francisco Gortazar
Focus

Abstract

In this paper we consider the problem of finding a global optimum of a multimodal function applying path relinking. In particular, we target unconstrained large-scale problems and compare two variants of this methodology: the static and the evolutionary path relinking (EvoPR). Both are based on the strategy of creating trajectories of moves passing through high-quality solutions in order to incorporate their attributes to the explored solutions. Computational comparisons are performed on a test-bed of 19 global optimization functions previously reported with dimensions ranging from 50 to 1,000, totalizing 95 instances. Our results show that the EvoPR procedure is competitive with the state-of-the-art methods in terms of the average optimality gap achieved. Statistical analysis is applied to draw significant conclusions.

Keywords

Evolutionary algorithms Path relinking Metaheuristics Global optimization 

Notes

Acknowledgments

This research has been partially supported by the Ministerio de Educación y Ciencia of Spain (TIN2009-07516). We would like to thank Profs. Glover and Resende for their descriptions and suggestions on the Path Relinking and Evolutionary Path Relinking methodologies, respectively.

References

  1. Andrade DV, Resende MGC (2007) GRASP with evolutionary path-relinking. In: Proceedings of seventh metaheuristics international conference (MIC 2007)Google Scholar
  2. Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005), pp 1769–1776Google Scholar
  3. Avriel M (1976) Nonlinear programming. Analysis and methods. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  4. Duarte A, Martí R, Glover F, Gortazar F (2010) Hybrid scatter tabu search for unconstrained global optimization. Ann Oper Res. doi: 10.1007/s10479-009-0596-2
  5. Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithm and interval schemata. In: Foundation of genetic algorithms, pp 187–202Google Scholar
  6. Glover F (1989) Tabu search. Part I. ORSA J Comput 1:190–206MathSciNetMATHGoogle Scholar
  7. Glover F (1994) Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Appl Math 49:231–255MathSciNetMATHCrossRefGoogle Scholar
  8. Glover F, Laguna M (1997) Tabu search. Kluwer, BostonMATHCrossRefGoogle Scholar
  9. Hansen N (2006) Compilation of results on the 2005 CEC benchmark function set. Technical report, CoLAB Institute of Computational Sciences ETH, ZurichGoogle Scholar
  10. Herrera F, Lozano M (2009) Workshop on evolutionary algorithms and other metaheuristics for continuous optimization problems—a scalability test. http://sci2s.ugr.es/programacion/workshop/Scalability.html
  11. Herrera F, Lozano M, Molina D (2010a) Test suite for the special issue of soft computing on scalability of evolutionary algorithms and other metaheuristics for large scale continuous optimization problems. Technical report, University of GranadaGoogle Scholar
  12. Herrera F, Lozano M, Molina D (2010b) Components and parameters of DE. Real-coded CHC and G-CMAES. Technical report, University of GranadaGoogle Scholar
  13. Hvattum LM, Duarte A, Martí R, Glover F (2010) The improvement method in scatter search: an experimental study on global optimization. Technical report, University of ValenciaGoogle Scholar
  14. Kolda TG, Lewis RM, Torczon VJ (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45:385–482MathSciNetMATHCrossRefGoogle Scholar
  15. Laguna M, Martí R (1999) GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J Comput 11(1):44–52MATHCrossRefGoogle Scholar
  16. Laguna M, Martí R (2003) Scatter search. Methodology and implementations in C. Kluwer, BostonCrossRefGoogle Scholar
  17. Laguna M, Martí R (2005) Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J Glob Optim 33:235–255MATHCrossRefGoogle Scholar
  18. Martí R, Glover F, Laguna M (2006) Principles of scatter search. Eur J Oper Res 169:359–372MATHCrossRefGoogle Scholar
  19. Resende MGC, Ribeiro CC (2003) Greedy randomized adaptive search procedures. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer, Dordrecht, pp 219–250Google Scholar
  20. Resende MGC, Werneck RF (2004) A hybrid heuristic for the p-median problem. J Heuristics 10:59–88MATHCrossRefGoogle Scholar
  21. Resende M, Martí R, Gallego M, Duarte A (2010) GRASP and PR for the max-min diversity problem. Comput Oper Res 37:498–508MathSciNetMATHCrossRefGoogle Scholar
  22. Roy RK (1990) A primer on the Taguchi method. Van Nostrand Reinhold, New YorkMATHGoogle Scholar
  23. Solis FJ, Wets RJ-B (1981) Minimization by random search techniques. Math Oper Res 6:19–30MathSciNetMATHCrossRefGoogle Scholar
  24. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359MathSciNetMATHCrossRefGoogle Scholar
  25. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University of SingaporeGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Abraham Duarte
    • 1
  • Rafael Martí
    • 2
  • Francisco Gortazar
    • 1
  1. 1.Departamento de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMadridSpain
  2. 2.Departamento de Estadística e Investigación OperativaUniversidad de ValenciaValenciaSpain

Personalised recommendations