Soft Computing

, Volume 12, Issue 10, pp 1027–1034 | Cite as

On two versions of the Loomis–Sikorski Theorem for algebraic structures

  • Anatolij DvurečenskijEmail author
  • Flavia Ventriglia
Original Paper


We present two versions of the Loomis–Sikorski Theorem, one for monotone σ-complete generalized pseudo effect algebras with strong unit satisfying a kind of the Riesz decomposition property. The second one is for Dedekind σ-complete positive pseudo Vitali spaces with strong unit. For any case we can find an appropriate system of nonnegative bounded functions forming an algebra of the given type with the operations defined by points that maps epimorphically onto the algebra.


Generalized pseudo effect algebra Pseudo Vitali space State Monotone σ-complete algebra Loomis–Sikorski Theorem g-Effect-tribe g-Vitali space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfsen EM (1971). Compact convex sets and boundary integrals. Springer, Berlin zbMATHGoogle Scholar
  2. Barbieri G and Weber H (2002). Measures on clans and on MV-algebras. In: Pap, E (eds) Handbook of measure theory, vol. II, pp 911–945. Elsevier, Amsterdam CrossRefGoogle Scholar
  3. Buhagiar D, Chetcuti E and Dvurečenskij A (2006). Loomis–Sikorski representation of monotone σ-complete effect algebras. Fuzzy Sets Syst 157: 683–690 zbMATHCrossRefGoogle Scholar
  4. Bunce LJ, Saitô K and Wright JDM (1999). A Dixmier-Schaefer-Zhang theorem for operator algebras. Proc Am Math Soc 127: 2975–2979 zbMATHCrossRefGoogle Scholar
  5. Chang CC (1958). Algebraic analysis of many valued logics. Trans Am Math Soc 88: 467–490 zbMATHCrossRefGoogle Scholar
  6. Di Nola A, Dvurečenskij A, Hyčko M and Manara C (2005). Entropy on effect algebras with the Riesz decomposition property II: MV-algebras. Kybernetika 41: 151–176 Google Scholar
  7. Dvurečenskij A (2000). Loomis–Sikorski theorem for σ-complete MV-algebras and ℓ-groups. J Aust Math Soc Ser A 68: 261–277 zbMATHGoogle Scholar
  8. Dvurečenskij A (2002). Pseudo MV-algebras are intervals in ℓ-groups. J Aust Math Soc 72: 427–445 MathSciNetzbMATHGoogle Scholar
  9. Dvurečenskij A (2001). States on pseudo MV-algebras. Stud Logica 68: 301–327 CrossRefzbMATHGoogle Scholar
  10. Dvurečenskij A and Pulmannová S (2000). New trends in quantum structures. Kluwer, Dordrecht zbMATHGoogle Scholar
  11. Dvurečenskij A and Vetterlein T (2001a). Pseudoeffect algebras. I. Basic properties. Inter J Theor Phys 40: 685–701 CrossRefzbMATHGoogle Scholar
  12. Dvurečenskij A and Vetterlein T (2001b). Pseudoeffect algebras. II. Group representation. Inter J Theor Phys 40: 703–726 CrossRefzbMATHGoogle Scholar
  13. Dvurečenskij A and Vetterlein T (2001). Generalized pseudo-effect algebras. In: Di Nola, A and Gerla, G (eds) Lectures on soft computing and fuzzy logic, pp 89–111. Physica-Verlag, Springer, Berlin Google Scholar
  14. Dvurečenskij A and Vetterlein T (2002). Algebras in the positive cone of po-groups. Order 19: 127–146 CrossRefMathSciNetzbMATHGoogle Scholar
  15. Dvurečenskij A and Vetterlein T (2003). Infinitary and Riesz properties for pseudoeffect algebras and po-groups. J Aust Math Soc 75: 295–311 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Dvurečenskij A and Vetterlein T (2004). Archimedeanicity and the MacNeill completion of pseudoeffect algebras and po-groups. Algebra Universalis 50: 207–230 CrossRefGoogle Scholar
  17. Foulis DJ and Bennett MK (1994). Effect algebras and unsharp quantum logics. Found Phys 24: 1325–1346 CrossRefMathSciNetGoogle Scholar
  18. Goodearl KR (1986). Partially ordered Abelian groups with interpolation. Mathematical Surveys and Monographs No. 20. Am Math Soc Providence, Rhode Island Google Scholar
  19. Mundici D (1986). Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J Funct Anal 65: 15–63 zbMATHCrossRefMathSciNetGoogle Scholar
  20. Mundici D (1999). Tensor products and the Loomis–Sikorski theorem for MV-algebras. Adv Appl Math 22: 227–248 zbMATHCrossRefMathSciNetGoogle Scholar
  21. Schmidt KD (1988) Minimal clans: a class of ordered partial semigroups including boolean rings and lattice-ordered groups. In: Semigroups—Theory and Applications (Oberwolfach 1986). Lecture notes in mathematics, vol. 1320, Springer, Berlin, pp 300–341Google Scholar
  22. Sikorski R (1964). Boolean algebras. Springer, Berlin zbMATHGoogle Scholar
  23. Wright JDM (1973). On approximating concave functions by convex functions. Bull Lond Math Soc 5: 221–222 zbMATHCrossRefGoogle Scholar
  24. Wyler O (1966). Clans. Compos Math 17: 172–189 zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Slovak Academy of SciencesMathematical InstituteBratislavaSlovakia
  2. 2.Dipartimento di matematica e applicazioni, “R. Caccioppoli”Universitá degli studi di Napoli “Federico II” complesso universitarioNaplesItaly

Personalised recommendations