Advertisement

Soft Computing

, Volume 12, Issue 3, pp 251–256 | Cite as

Mediative fuzzy logic: a new approach for contradictory knowledge management

  • Oscar Montiel
  • Oscar CastilloEmail author
  • Patricia Melin
  • Roberto Sepulveda
Focus

Abstract

In this paper we are proposing a novel fuzzy method that can handle imperfect knowledge in a broader way than Intuitionistic (in the sense of Atanassov) fuzzy logic does (IFL). This fuzzy method can manage non- contradictory, doubtful, and contradictory information provided by experts, providing a mediated solution, so we called it Mediative Fuzzy Logic (MFL). We are comparing results of MFL, with IFL and traditional Fuzzy logic (FL).

Keywords

Mediative fuzzy logic Paraconsistent logic Fuzzy logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong SJ (2001) Principles of forecasting. A handbook for researchers and practitioners. In: Armstrong SJ (ed), University of Pennsylvania, Wharton School, PhiladelphiaGoogle Scholar
  2. Atanassov K (1999) Intuitionistic fuzzy sets: theory and applications. Springer, HeidelbergzbMATHGoogle Scholar
  3. Bal DA, McCulloch JR. WH (1993) International business. Introduction and essentials, 5th edn. Richard D. Irwin Publishers, USA, pp 138–140, 225Google Scholar
  4. Castillo O, Melin P (2003) A new method for fuzzy inference in intuitionistic fuzzy systems. In: Proceedings of the international conference NAFIPS 2003, July 2003. IEEE Press, Chicago, pp 20–25Google Scholar
  5. Castillo O, Aguilar L, Cazarez N, Rico D (2005) Intelligent control of dynamical systems with type-2 fuzzy logic and stability study. In: Proceedings of ICAI-2005, Las Vegas, pp 400–405Google Scholar
  6. Horwitz RI (1987) Complexity and contradiction in clinical trial research. Am J Med 82:498–510CrossRefGoogle Scholar
  7. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, USAzbMATHGoogle Scholar
  8. Man KF, Tang KS, Kwong S (1999) Genetic algorithms. Springer, LondonzbMATHGoogle Scholar
  9. Mendel JM (2000) Uncertain rule-based fuzzy logic systems, Introduction and new directions. Prentice Hall, USAGoogle Scholar
  10. Montiel O, Castillo O, Melin P, Rodríguez Días A, Sepúlveda R (2005a) Reducing the cycling problem in evolutionary algorithms. In: Proceedings of ICAI-2005, June 2005, Las Vegas, pp 426–432Google Scholar
  11. Montiel O, Castillo O, Melin P, Rodríguez A, Sepúlveda R (2005b) Human evolutionary model. J Intell Syst 14:213–236Google Scholar
  12. Mendel JM, Bob John RI (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127CrossRefGoogle Scholar
  13. Nikilova M, Nikolov N, Cornelis C, Deschrijver G (2002) Survey of the research on intuitionistic fuzzy sets. Adv Stud Contemp Math 4(2):127–157MathSciNetGoogle Scholar
  14. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Oscar Montiel
    • 1
  • Oscar Castillo
    • 2
    Email author
  • Patricia Melin
    • 2
  • Roberto Sepulveda
    • 1
  1. 1.CITEDI-IPNMesa de Otay TijuanaMexico
  2. 2.Department of Computer ScienceTijuana Institute of TechnologyChula VistaUSA

Personalised recommendations