Soft Computing

, Volume 11, Issue 9, pp 819–828 | Cite as

A scatter search-based technique for pair-wise 3D range image registration in forensic anthropology

  • J. Santamaría
  • O. Cordón
  • S. Damas
  • I. Aleman
  • M. Botella
Original Paper


Different tasks in forensic anthropology require the use of three-dimensional models of forensic objects (skulls, bones, corpses, etc) captured by 3D range scanners. Since a whole object cannot be completely scanned with a single image, multiple scans from different views are needed to supply the information to construct the 3D model. Range image registration methods study the accurate integration of the different views acquired by range scanners, with pair-wise approaches progressively processing every adjacent pair of scanned views until reconstructing the whole 3D model of the object. Our proposal is based on the adaptation of our previous work (Cordon et al, IEEE Conference on Evolutionary Computation, pp 2738–2744, 2005 in Pattern Recognit Lett 27(11); 1191-1200, 2006) in order to apply the scatter search evolutionary algorithm to pair-wise image registration in forensic anthropology applications. To measure the performance of this adaptation, we design an experimental setup considering some of the most recent and accurate evolutionary techniques for the problem, as well as one skull from our Physical Anthropology Lab. Two additional volumes, commonly used in other pair-wise range IR contributions, have also been considered to complement the comparison of results among the proposals.


Mean Square Error Image Registration Iterative Close Point Scatter Search Physical Anthropology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRefGoogle Scholar
  2. Blais G, Levine M (1995) Registering multiview range data to create 3D computer objects. IEEE Trans Pattern Anal Mach Intell 17(8):820–824CrossRefGoogle Scholar
  3. Brown LG (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376CrossRefGoogle Scholar
  4. Chen CS, Hung YP, Cheng JB (1998) A fast automatic method for registration of partially overlapping range images. In: International conference on computer vision – ICCV 1998 pp 242–248Google Scholar
  5. Chow CK, Tsui HT, Lee T (2004) Surface registration using a dynamic genetic algorithm. Pattern Recogn 37:105–117MATHCrossRefGoogle Scholar
  6. Cordón O, Damas S, Santamaría J (2005a) A scatter search-based optimizer for the registration of 3D surfaces. In: IEEE conference on evolutionary computation – CEC 2005 pp 2738–2744Google Scholar
  7. Cordón O, Damas S, Santamaría J, Martí R (2005b) 3D inter-subject medical image registration by scatter search. In: Second international workshop on hybrid metaheuristics (HM2005), Lecture Notes on Computer Science, vol. 3636, pp 90–103Google Scholar
  8. Cordón O, Damas S (2006) Image registration with iterated local search. J Heurist 12(1-2):73–94CrossRefMATHGoogle Scholar
  9. Cordón O, Damas S, Santamaría J (2006a) A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm. Pattern Recogn Lett 27(11):1191–1200CrossRefGoogle Scholar
  10. Cordón O, Damas S, Santamaría J (2006b) Feature-based image registration by means of the CHC evolutionary algorithm. Image Vis Comput 24(5):525–533CrossRefGoogle Scholar
  11. Eshelman LJ (1993) Real-coded genetic algorithms and interval schemata. In: Whitley LD (eds) Foundations of genetic algorithms vol 2. Morgan Kaufmann San Francisco pp 187–202Google Scholar
  12. Fusiello A, Castellani U, Ronchetti L, Murino V (2002) Model acquisition by registration of multiple acoustic range views. In: European conference on computer vision – ECCV 2002, pp 805–819Google Scholar
  13. Garai G, Chaudhuri BB (2002) A cascaded genetic algorithm for efficient optimization and pattern matching. Image Vis Comput 20(4):265–277CrossRefGoogle Scholar
  14. Glover F (1977) Heuristic for integer programming using surrogate constraints. Decis Sci 8:156–166Google Scholar
  15. Glover F, Laguna M, Martí R (2003) Scatter search. Theory and applications of evolutionary computation: recent trends. Ghosh A, Tsutsui S (eds). Springer, Berlin Heidelberg New York, pp 519–537Google Scholar
  16. Han KP, Song KW, Chung EY, Cho SJ, Ha YH (2001) Stereo matching using genetic algorithm with adaptive chromosomes. Pattern Recogn 34(9):1729–1740MATHCrossRefGoogle Scholar
  17. Hart WE (1994) Adaptive global optimization with local search. PhD Thesis, University of California, San DiegoGoogle Scholar
  18. He R, Narayana PA (2002) Global optimization of mutual information: application to three-dimensional retrospective registration of magnetic resonance images. Comput Med Imag and Graph 26:277–292CrossRefGoogle Scholar
  19. Herrera F, Lozano M, Molina D (2006) Continuous scatter search: an analysis of the integration of some combination methods and improvement strategies. Euro J Oper Res 169(2):450–476MATHCrossRefMathSciNetGoogle Scholar
  20. Ikeuchi K, Sato Y (2001) (eds) Modeling from reality. Kluwer, DordrechtGoogle Scholar
  21. Iscan MY (1981a) Concepts in teaching forensic anthropology. Med Anthropol Newslett 13(1):10–12CrossRefGoogle Scholar
  22. Iscan MY (1981b) Integral forensic anthropology. Pract Anthropol 3(4):21–30Google Scholar
  23. Jonhson AE, Hebert M (1999) Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Mach Intell 21(5):433–449CrossRefGoogle Scholar
  24. Krogman WM, Iscan MY (1986) The human skeleton in forensic medicine. Springfield, Owerri)Google Scholar
  25. Laguna M, Martí R (2003) Scatter search: methodology and implementations in C. Kluwer, DordrechtGoogle Scholar
  26. Liu Y (2004) Improving ICP with easy implementation for free form surface matching. Pattern Recogn 37(2):211–226MATHCrossRefGoogle Scholar
  27. Lomonosov E, Chetverikov D, Ekart A (2006) Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm. Pattn Recog Lett 27(11):1201–1208CrossRefGoogle Scholar
  28. Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. In: Handbook of metaheuristics, Glover F, Kochenberger G (eds) Kluwer, Dordrecht pp 321–353Google Scholar
  29. Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded memetic algorithms with crossover hill-climbing. Evolut Comput 12(3):273–302CrossRefGoogle Scholar
  30. Masuda T, Yokoya N (1995) A robust method for registration and segmentation of multiple range images. Comput Vis Image Understanding 61(3):295–307CrossRefGoogle Scholar
  31. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  32. Okatani IS, Deguchi K (2002) A method for fine registration of multiple view range images considering the measurement error properties. Compur Vis Image Understanding 87:66–77MATHCrossRefGoogle Scholar
  33. Preparata F, Shamos M (1986) Computational geometry, an introduction. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Shoemake K (1985) Animating rotation with quaternion curves. ACM SIGGRAPH’85, pp 245–254Google Scholar
  35. Silva L, Bellon ORP, Boyer KL (2005) Robust range image registration using genetic algorithms and the surface interpetenetration measure. World Scientific, SingporeGoogle Scholar
  36. Solis FJ, Wets RJB (1981) Minimization by random search techniques. Math Oper Res 6:19–30MATHMathSciNetCrossRefGoogle Scholar
  37. Yamany SM, Ahmed MN, Farag AA (1991) A new genetic-based technique for matching 3D curves and surfaces. Pattern Recogn 32:1817–1820CrossRefGoogle Scholar
  38. Zhang Z (1994) Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vis 13(2):119–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. Santamaría
    • 1
  • O. Cordón
    • 2
    • 3
  • S. Damas
    • 2
    • 4
  • I. Aleman
    • 5
  • M. Botella
    • 5
  1. 1.Department of Software EngineeringUniversity of CádizCádizSpain
  2. 2.European Centre for Soft ComputingMieresSpain
  3. 3.Department of Computer Science and A.I.University of GranadaGranadaSpain
  4. 4.Department of Software EngineeringUniversity of GranadaGranadaSpain
  5. 5.Physical Anthropology LabUniversity of GranadaGranadaSpain

Personalised recommendations