Soft Computing

, Volume 11, Issue 5, pp 401–419 | Cite as

Rule Base Reduction and Genetic Tuning of Fuzzy Systems Based on the Linguistic 3-tuples Representation

  • Rafael Alcalá
  • Jesús Alcalá-Fdez
  • María José Gacto
  • Francisco Herrera
Focus

Abstract

Recently, a new linguistic rule representation model was presented to perform a genetic lateral tuning of membership functions. It is based on the linguistic 2-tuples representation model, that allows the symbolic translation of a label considering an unique parameter. It involves a reduction of the search space that eases the derivation of optimal models. This work presents a new symbolic representation with three values (s, α, β), respectively representing a label, the lateral displacement and the amplitude variation of the support of this label. Based on this new representation we propose a new method for fine tuning of membership functions that is combined with a rule base reduction method in order to extract the most useful tuned rules. This approach makes use of a modified inference system that consider non-covered inputs in order to improve the final fuzzy model generalization ability, specially in highly non-linear problems with noise points. Additionally, we analyze the proposed approach showing its behavior in two real-world applications.

Keywords

Linguistic fuzzy modeling Interpretability-accuracy trade-off Evolutionary tuning Linguistic 3-tuples representation Rule selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcalá R, Herrera F (2004) Genetic tuning on fuzzy systems based on the linguistic 2-tuples representation. In: Proceedings of the 13th IEEE international conference on fuzzy systems, vol 1, pp 233–238Google Scholar
  2. 2.
    Babuška R, Oosterhoff J, Oudshoorn A, Bruijn PM (2002) Fuzzy selftuning PI control of pH in fermentation, Eng Appl Artif Intell 15(1): 3–15CrossRefGoogle Scholar
  3. 3.
    Bastian A (1994) How to handle the flexibility of linguistic variables with applications. Int J Uncertain, Fuzziness Knowl-Based Syst 3(4): 463-484CrossRefMathSciNetGoogle Scholar
  4. 4.
    Casillas J, Cordón O, Herrera F, Magdalena L (2005) Accuracy improvements in linguistic fuzzy modeling. Stud Fuzziness Soft Comput 129: 385Google Scholar
  5. 5.
    Casillas J, Cordón O, del Jesus MJ, Herrera F (2005) Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Trans Fuzzy Syst 13(1): 13–29CrossRefGoogle Scholar
  6. 6.
    Carmona P, Castro J, Zurita J (2004) Strategies to identify fuzzy rules directly from certainty degrees: a comparison and a proposal. IEEE Trans Fuzzy Sys 12(5): 631–640CrossRefGoogle Scholar
  7. 7.
    Cordón O, Herrera F (1997) A three-stage evolutionary process for learning descriptive and approximate fuzzy logic controller knowledge bases from examples. Int J Approx Reason 17(4): 369–407CrossRefMATHGoogle Scholar
  8. 8.
    Cordón O, Herrera F, Peregrín A (1997) Applicability of the fuzzy operators in the design of fuzzy logic controllers. Fuzzy Sets Syst 86(1): 15–41CrossRefMATHGoogle Scholar
  9. 9.
    Cordón O, del Jesus MJ, Herrera F (1998) Genetic learning of fuzzy rule-based classification systems cooperating with fuzzy reasoning methods. Int J Intell Syst 13: 1025–1053CrossRefGoogle Scholar
  10. 10.
    Cordón O, Herrera F, Sánchez L (1999) Solving electrical distribution problems using hybrid evolutionary data analysis techniques. Appl Intell 10: 5–24CrossRefGoogle Scholar
  11. 11.
    Cordón O, Herrera F (2000) A proposal for improving the accuracy of linguistic modeling. IEEE Trans Fuzzy Syst 8(3): 335–344CrossRefGoogle Scholar
  12. 12.
    Cordón O, Herrera F, Villar P (2001) Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base. IEEE Trans Fuzzy Syst 9(4): 667–674CrossRefGoogle Scholar
  13. 13.
    Cordón O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systems: Evolutionary tuning and learning of fuzzy knowledge bases World Scientific, Singapore, 488Google Scholar
  14. 14.
    Cordón O, Gomide F, Herrera F, Hoffmann F, Magdalena L (2004) Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Systems 41(1): 5–31CrossRefGoogle Scholar
  15. 15.
    Eshelman LJ (1991) The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In: Foundations of genetic Algorithms 1, Rawlin G (Ed.) Morgan Kaufman, 265–283Google Scholar
  16. 16.
    Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, New York, P 372MATHGoogle Scholar
  17. 17.
    Gómez-Skarmeta AF, Jiménez F (1999) Fuzzy modeling with hybrid systems. Fuzzy Sets Syste 104: 1991–208Google Scholar
  18. 18.
    González A, Pérez R (1999) A study about the inclusion of linguistic hedges in a fuzzy rule learning algorithm. Int J Uncertain Fuzziness Knowl-Based Syst 7(3): 257–266CrossRefGoogle Scholar
  19. 19.
    Gürocak HB (1999) A genetic-algorithm-based method for tuning fuzzy logic controllers. Fuzzy Sets Syst 108(1): 39–47CrossRefMATHGoogle Scholar
  20. 20.
    Gürocak HB (2000) Tuning fuzzy logic controllers using response envelope method. Fuzzy Sets Syst 115(2): 287–304CrossRefGoogle Scholar
  21. 21.
    Herrera F, Lozano M, Verdegay JL (1995) Tuning fuzzy logic controllers by genetic algorithms. Int J Approx Reason 12: 299–315CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Herrera F, Lozano M, Verdegay JL (1998) A learning process for fuzzy control rules using genetic algorithms. Fuzzy Sets Syst 100: 143–158CrossRefGoogle Scholar
  23. 23.
    Herrera F, Martínez L (2000) A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 8(6): 746–752CrossRefGoogle Scholar
  24. 24.
    Herrera F, Lozano M, Sánchez AM (2003) A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study. Int J Intell Syst 18: 309–338CrossRefMATHGoogle Scholar
  25. 25.
    Holland JH (1975) Adaptation in natural and systems. The University of Michigan Press, London, p 228Google Scholar
  26. 26.
    Hong TP, Lee CY (1999) Effect of merging order on performance of fuzzy induction. Intell Data Anal 3(2): 139–151CrossRefMATHGoogle Scholar
  27. 27.
    Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H (1995) Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans Fuzzy Syst (3)3: 260–270CrossRefGoogle Scholar
  28. 28.
    Nozaki K, Ishibuchi H, Tanaka H (1997) A simple but powerful heuristic method for generating fuzzy rules from numerical data. Fuzzy Sets Syst 86(3): 251–270CrossRefGoogle Scholar
  29. 29.
    Ishibuchi H, Murata T, Türksen IB (1997) Single-objective and two objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst 89(2): 135–150CrossRefGoogle Scholar
  30. 30.
    Ishibuchi H, Yamamoto T (2003) Trade-off between the number of fuzzy rules and their classification performance. In: Accuracy improvements in linguistic fuzzy modeling, Casillas J, Cordón O, Herrera F, Magdalena L, (eds) Springer Heidelberg, Germany, pp 72–99Google Scholar
  31. 31.
    Jang JSR (1993) ANFIS: adaptive network based fuzzy inference system. IEEE Trans Syst. Man Cyber 23(3): 665–684CrossRefMathSciNetGoogle Scholar
  32. 32.
    Karr C (1991) Genetic algorithms for fuzzy controllers. AI Expert 6(2): 26–33Google Scholar
  33. 33.
    Klose A, Nurnberger A, Nauck D (1998) Some approaches to improve the interpretability of neuro-fuzzy classifiers. In: Proceeding of the 6th European congress on intelligent techniques and soft computing Vol 1, pp 629–633Google Scholar
  34. 34.
    Krone A, Krause H, Slawinski T (2001) A new rule reduction method for finding interpretable and small rule bases in high dimensional search spaces. In: Proceeding of the 9th IEEE international conference on fuzzy syst, Vol 2, pp 693–699Google Scholar
  35. 35.
    Krone A, Taeger H (2001) Data-based fuzzy rule test for fuzzy modelling. Fuzzy Sets Syst 123(3): 343–358CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    Liu BD, Chen CY, Tsao JY (2001) Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms. IEEE Trans Syst, Man Cybern. Part B: Cybern 31(1): 32–53CrossRefGoogle Scholar
  37. 37.
    Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc. IEEE 121(12): 1585–1588Google Scholar
  38. 38.
    Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Stud 7: 1–13CrossRefMATHGoogle Scholar
  39. 39.
    Roubos JA, Setnes M (2001) Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans on Fuzzy Syst 9(4): 516–524CrossRefGoogle Scholar
  40. 40.
    Setnes M, Babuška R, Kaymak U, van Nauta Lemke HR (1998) Similarity measures in fuzzy rule base simplification. IEEE Trans Syst, Man Cyber - Part B: Cybern 28(3): 376–386CrossRefGoogle Scholar
  41. 41.
    Setnes M, Roubos JA (2000) GA-fuzzy modeling and classification: complexity and performance. IEEE Trans Fuzzy Syst 8(5): 509–522CrossRefGoogle Scholar
  42. 42.
    Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst, Man Cybern 22:6, (1992) 1414–1427.Google Scholar
  43. 43.
    Yam Y, Baranyi P, Yang CT (1999) Reduction of fuzzy rule base via singular value decomposition. IEEE Trans Fuzzy Syst 7:120–132CrossRefGoogle Scholar
  44. 44.
    Yen J, Wang L (1999) Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Transa Syst, Man Cybern Part B: Cybern 29: 13–24CrossRefGoogle Scholar
  45. 45.
    Zadeh LA (1965) Fuzzy sets. Info Control 8: 338–353CrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst, Man Cybern 3:28–44MathSciNetMATHGoogle Scholar
  47. 47.
    Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning, parts I, II and III. Inf Sci 8:199–249, 301–357, 9:43–80Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Rafael Alcalá
    • 1
  • Jesús Alcalá-Fdez
    • 1
  • María José Gacto
    • 1
  • Francisco Herrera
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations