Soft Computing

, Volume 11, Issue 6, pp 531–540 | Cite as

Multi-Objective Optimization using Grid Computing

Original Paper

Abstract

This paper analyzes some technical and practical issues concerning the use of parallel systems to solve multi-objective optimization problems using enumerative search. This technique constitutes a conceptually simple search strategy, and it is based on evaluating each possible solution from a given finite search space. The results obtained by enumeration are impractical for most computer platforms and researchers, but they exhibit a great interest because they can be used to be compared against the values obtained by stochastic techniques. We analyze here the use of a grid computing system to cope with the limits of enumerative search. After evaluating the performance of the sequential algorithm, we present, first, a parallel algorithm targeted to multiprocessor systems. Then, we design a distributed version prepared to be executed on a federation of geographically distributed computers known as a computational grid. Our conclusion is that this kind of systems can provide to the community with a large and precise set of Pareto fronts that would be otherwise unknown.

Keywords

Multi-objective problem optimization Enumerative search Parallel computing Grid computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms. IEEE Trans Evol Comput 6(5):443–462CrossRefGoogle Scholar
  2. 2.
    Alba E, Troya JM (1999) A survey of parallel distributed genetic algorithms. Complexity 4(4):31–52CrossRefMathSciNetGoogle Scholar
  3. 3.
    Aloisio G, Blasi E, Cafaro M, Epicoco I, Fiore S, Mocavero S (2003) A grid environment for diesel engine chamber optimization. In: Proceedings of ParCo2003Google Scholar
  4. 4.
    Anstreicher K, Brixius N, Goux J-P, Linderoth J (2002) Solving large quadratic assignment problems on computational grids. Mathe Program 91:563–588CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Baker M, Buyya R, Laforenza D (2002) Grids and grid technologies for wide area distributed computing. Soft Prac Exp 32:1437–1466CrossRefMATHGoogle Scholar
  6. 6.
    Berman F, Fox GC, Hey AJG (2003) Grid comptuing. making the global infrastructure a reality. In: Communications networking and distributed systems. Wiley New YorkGoogle Scholar
  7. 7.
    Coello CA (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Sys Int J 1(3):269–308Google Scholar
  8. 8.
    Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. In: Genetic algorithms and evolutionary computation. Kluwer DordrechtGoogle Scholar
  9. 9.
    Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New YorkMATHGoogle Scholar
  10. 10.
    Deb K, Zope P, Jain A (2002) Distributed computing of pareto-optimal solutions using multi-objective evolutionary algorithms. Technical Report 2002, KanGALGoogle Scholar
  11. 11.
    Fonseca CM, Flemming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evol Comput 3(1):1–16Google Scholar
  12. 12.
    Foster I, Kesselman C (1997) Globus: a metacomputing infraestructure toolkit. Int J Supercomput Appl 11(2):115–128CrossRefGoogle Scholar
  13. 13.
    Foster I, Kesselman C (1999) The grid: blueprint for a new computing infrastructure. Morgan-Kaufmann, San FranciscoGoogle Scholar
  14. 14.
    Gendron B, Crainic TG (1994) Parallel branch and bound algorithms: survey and synthesis. Oper Res 42:1042–1066MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Grama A, Kumar V (1999) State of the art in parallel search techniques for discrete optimization. IEEE Trans Knowl Data Eng 11(1):28–35CrossRefGoogle Scholar
  16. 16.
    Grimshaw A, Wulf W (1997) The legion vision of a worldwide virtual computer. Commun ACM 40(1) 1995Google Scholar
  17. 17.
    Kurpati A, Azarm S, Wu J (2002) Constraint handling improvements for multi-objective genetic algorithms. Struct Multidisciplinary Optimization, 23(3):204–213CrossRefGoogle Scholar
  18. 18.
    Migdalas A, Pardalos PM, Story S (1997) Parallel computing in optimization applied optimization, Vol 7. Kluwer, DordrechtGoogle Scholar
  19. 19.
    Neary MO, Cappello P (2002) Advanced eager scheduling for Java-based adaptively parallel computing. In: Procedings of the ACM Java grande/ISCOPE conference, pp 56–65Google Scholar
  20. 20.
    Osyczka A (1985) Multicriteria optimization for engineering. Academic, LondonGoogle Scholar
  21. 21.
    Tanimura Y, Hiroyasu T, Miki M, Aoi K (2002) The System for evolutionary computing on the computational grid. In: Parallel and distributed computing and systems (PDCS 2002)Google Scholar
  22. 22.
    Thain D, Tannenbaum T, Livny M (2002) Condor and the grid. In: Berman F, Fox G, Hey T (eds). Grid Computing: making the global infrastructure a reality. Wiley, New YorkGoogle Scholar
  23. 23.
    UEA CALMA Group (1995) CALMA project report 2.4: parallelism in combinatorial optimisation. Technical report, School of Information Systems, University of East Anglia, Norwch, UKGoogle Scholar
  24. 24.
    Van Veldhuizen DA, Lamont GB (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput 8(2):125–147CrossRefGoogle Scholar
  25. 25.
    Van Veldhuizen DA, Zydallis JB, Lamont GB (2003) Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans Evol Comput 87(2):144 –173CrossRefGoogle Scholar
  26. 26.
    Wright SJ (2000) Solving optimization problems on computational grids. Technical report, Mathematics and Computer Science Division, Argonne National Latoratory, Argonne, ILGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Antonio J. Nebro
    • 1
  • Enrique Alba
    • 2
  • Francisco Luna
    • 3
  1. 1.Departamento de Lenguajes y Ciencias de la Computación, E.T.S. Ingeniería InformáticaUniversidad de MálagaMalagaSpain
  2. 2.Departamento de Lenguajes y Ciencias de la Computación, E.T.S. Ingeniería InformáticaUniversidad de MálagaMalagaSpain
  3. 3.Departamento de Lenguajes y Ciencias de la Computación, E.T.S. Ingeniería InformáticaUniversidad de MálagaMalagaSpain

Personalised recommendations