Advertisement

Soft Computing

, Volume 10, Issue 3, pp 279–284 | Cite as

A note on congruence permutability and fuzzy logic

  • Vilém Vychodil
Article

Abstract

We study congruence permutability of algebras with fuzzy equalities. The notion of degree of congruence permutability naturally arises in this context. We present a Mal'cev-like characterization of congruence permutable varieties of algebras with fuzzy equalities. Our note presents a way to generalize various congruence conditions from the point of view of fuzzy logic.

Keywords

Fuzzy equality Fuzzy logic Mal'cev-condition Permutability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bělohlávek R (2002) Fuzzy relational systems: foundations and principles. Kluwer Plenum, New YorkGoogle Scholar
  2. 2.
    Bělohlávek R (2002) Fuzzy equational logic. Arch Math Log 41:83–90Google Scholar
  3. 3.
    Bělohlávek R (2003) Birkhoff variety theorem and fuzzy logic. Arch Math Log 42:781–790Google Scholar
  4. 4.
    Bělohlávek R, Vychodil V (2003) Algebras with fuzzy equalities (submitted, extended version of conference paper: algebras with fuzzy equalities, proceedings of IFSA World Congress, Istanbul, Turkey, pp 1–4)Google Scholar
  5. 5.
    Bělohlávek R, Vychodil V Fuzzy horn logic I: proof theory. Arch Math Logic (to appear)Google Scholar
  6. 6.
    Bělohlávek R, Vychodil V Fuzzy horn logic II: implicationally defined classes (to appear)Google Scholar
  7. 7.
    Burris S, Sankappanavar HP (1981) A course in universal algebra. Springer-Heidelberg New YorkGoogle Scholar
  8. 8.
    Demirci M (2002) Fundamentals of M-vague algebra and M-vague arithmetic operations. Int J Uncertainty, Fuzziness Knowl Based Syst 10(1):25–75Google Scholar
  9. 9.
    Goguen JA (1967) L-fuzzy sets. J Math Anal Appl 18:145–174Google Scholar
  10. 10.
    Goguen JA (1968-9) The logic of inexact concepts. Synthese 18:325–373Google Scholar
  11. 11.
    Gottwald S (2001) A treatise on many-valued logics. Research Studies Press, Baldock, Hertfordshire, EnglandGoogle Scholar
  12. 12.
    Hájek P (1998) Metamathematics of fuzzy logic. Kluwer, DordrechtGoogle Scholar
  13. 13.
    Höhle U (1996) On the fundamentals of fuzzy set theory. J Math Anal Appl 201:786–826Google Scholar
  14. 14.
    Mal'cev AI (1954) On the general theory of algebraic systems (in Russian) Math Sbornik (N.S.) 35(77):3–20. English translation: Am Math Soc Translations (2) 27(1963), 125–142Google Scholar
  15. 15.
    Neuman WD (1974) On Malcev conditions. Austral Math Soc 17:376–384Google Scholar
  16. 16.
    Novák V, Perfilieva I, Močkoř J (1999) Mathematical principles of fuzzy logic. Kluwer, BostonGoogle Scholar
  17. 17.
    Rosenfeld A (1971) Fuzzy groups. J Math Anal Appl 35(3):512–517Google Scholar
  18. 18.
    Taylor W (1973) Characterizing Mal'cev conditions. Algebra Universalis 3:351–397Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department Computer SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations