Advertisement

Finite-time stabilization of an overhead crane with a flexible cable

  • Brigitte d’Andréa-Novel
  • Iván Moyano
  • Lionel RosierEmail author
Original Article

Abstract

The paper is concerned with the finite-time stabilization of a hybrid PDE-ODE system which may serve as a model for the motion of an overhead crane with a flexible cable. The dynamics of the flexible cable is assumed to be described by the wave equation with constant coefficients. Using a nonlinear feedback law inspired by those given by Haimo (SIAM J Control Optim 24(4):760–770, 1986) for a second-order ODE, we prove that a finite-time stabilization occurs for the full system platform \(+\) cable. The global well-posedness of the system is also established by using the theory of nonlinear semigroups.

Keywords

Finite-time stability PDE-ODE system Nonlinear feedback law Nonlinear semigroups Transparent boundary conditions Wave equation 

Mathematics Subject Classification

93C20 93D15 

Notes

Acknowledgements

This work was done when Iván Moyano was visiting Centre de Robotique, MINES ParisTech, as a postdoctoral student. Iván Moyano thanks Centre de Robotique, MINES ParisTech, for its hospitality. The authors were supported by the ANR project Finite4SoS (ANR-15-CE23-0007). LR was also partially supported by the MathAmSud project Icops.

References

  1. 1.
    Alabau-Boussouira F, Perrollaz V, Rosier L (2015) Finite-time stabilization of a network of strings. Math Control Relat Fields 5(4):721–742MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bacciotti A, Rosier L (2005) Liapunov functions and stability in control theory, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38:751–766MathSciNetCrossRefGoogle Scholar
  4. 4.
    Browder FE (1963) The solvability of non-linear functional equations. Duke Math J 30:557–566MathSciNetCrossRefGoogle Scholar
  5. 5.
    Coron J-M, d’Andréa-Novel B (1998) Stabilization of a rotating body-beam without damping. IEEE Trans Autom Control 43(5):608–618MathSciNetCrossRefGoogle Scholar
  6. 6.
    Coron J-M, d’Andréa-Novel B, Bastin G (2007) A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans Autom Control 52(1):2–11MathSciNetCrossRefGoogle Scholar
  7. 7.
    Courant R, Hilbert D (1962) Methods of mathematical physics, vol II. Interscience Publishers, GenevazbMATHGoogle Scholar
  8. 8.
    d’Andréa-Novel B, Boustany F, Conrad F, Rao BP (1994) Feedback stabilization of a hybrid PDE-ODE system: application to an overhead crane. MCSS J 7:1–22MathSciNetzbMATHGoogle Scholar
  9. 9.
    d’Andréa-Novel B, Coron J-M (2000) Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica 36:587–593MathSciNetCrossRefGoogle Scholar
  10. 10.
    d’Andréa-Novel B, Coron J-M (2002) Stabilization of an overhead crane with a variable length flexible cable. Comput Appl Math 21(1):1–33MathSciNetzbMATHGoogle Scholar
  11. 11.
    Efimov D, Polyakov A, Levant A, Perruquetti W (2017) Realization and discretization of asymptotically stable homogeneous systems. IEEE Trans Autom Control 62(11):5962–5969MathSciNetCrossRefGoogle Scholar
  12. 12.
    Evans LC (1998) Partial differential equations. Graduate studies in mathematics, 19. American Mathematical Society, ProvidenceGoogle Scholar
  13. 13.
    Haimo VT (1986) Finite time controllers. SIAM J Control Optim 24(4):760–770MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hong Y, Huang J, Xu Y (1999) On an output feedback finite-time stabilization problem. In: Proceedings of 38th IEEE conference on decision and control, Phoenix, pp 1302–1307Google Scholar
  15. 15.
    Kato T (1967) Nonlinear semigroups and evolution equations. J Math Soc Jpn 19(4):508–520MathSciNetCrossRefGoogle Scholar
  16. 16.
    Komornik V (1994) Exact controllability and stabilization. The multiplier method, Masson, PariszbMATHGoogle Scholar
  17. 17.
    Lions J-L (1988) Contrôlabilité exacte des systèmes distribués, vol 1. Masson, PariszbMATHGoogle Scholar
  18. 18.
    Mifdal A (1997) Stabilisation uniforme d’un système hybride. C R Acad Sci Paris 324:37–42MathSciNetCrossRefGoogle Scholar
  19. 19.
    Minty GJ (1962) Monotone (nonlinear) operators in Hilbert spaces. Duke Math J 29:341–346MathSciNetCrossRefGoogle Scholar
  20. 20.
    Morgül O, Rao BP, Conrad F (1994) On the stabilization of a cable with a tip mass. IEEE Trans Autom Control 39(10):440–454MathSciNetCrossRefGoogle Scholar
  21. 21.
    Perrollaz V, Rosier L (2014) Finite-time stabilization of \(2\times 2\) hyperbolic systems on tree-shaped networks. SIAM J Control Optim 52(1):143–163MathSciNetCrossRefGoogle Scholar
  22. 22.
    Reeken M (1977) The equation of motion of a chain, Mathematische Zeitschrift, 155. Springer, Berlin, pp 219–237zbMATHGoogle Scholar
  23. 23.
    Sepulchre R, Janković M, Kokotović P (1997) Constructive nonlinear control. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre de Robotique, MINES ParisTechPSL Research UniversityParis Cedex 06France
  2. 2.STMS UMR9912Ircam, CNRS, Sorbonne Université, Ministère de la cultureParisFrance
  3. 3.DPMMS, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUnited Kingdom
  4. 4.Centre Automatique et Systèmes (CAS) and Centre de Robotique, MINES ParisTechPSL Research UniversityParis Cedex 06France

Personalised recommendations