A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups

Original Article

Abstract

In this article, we give a necessary and sufficient condition of Kalman type for the indirect controllability of systems of groups of linear operators, under some “regularity and locality” conditions on the control operator that will be made precise later and fit very well the case of distributed controls. Moreover, in the case of first order in time systems, when the Kalman rank condition is not satisfied, we characterize exactly the initial conditions that can be controlled. Some applications to the control of systems of Schrödinger or wave equations are provided. The main tool used here is the fictitious control method coupled with the proof of an algebraic solvability property for some related underdetermined system and some regularity results.

Keywords

Controllability of abstract linear semi-groups Indirect controllability of systems Schrödinger and wave equations Fictitious control method Algebraic solvability 

Mathematics Subject Classification

35F35 35G35 47D03 93B05 93B07 

References

  1. 1.
    Alabau-Boussouira F (2013) A hierarchic multi-level energy method for the control of bidiagonal and mixed \(n\)-coupled cascade systems of PDE’s by a reduced number of controls. Adv Differ Equ 18(11–12):1005–1072MathSciNetMATHGoogle Scholar
  2. 2.
    Alabau-Boussouira F, Coron J-M, Olive G (2017) Internal controllability of first order quasi-linear hyperbolic systems with a reduced number of controls. SIAM J Control Optim 55(1):300–323MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alabau-Boussouira F, Léautaud M (2013) Indirect controllability of locally coupled wave-type systems and applications. J Math Pures Appl (9) 99(5):544–576MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ammar-Khodja F, Benabdallah A, Dupaix C (2006) Null-controllability of some reaction-diffusion systems with one control force. J Math Anal Appl 320(2):928–943MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ammar Khodja F, Benabdallah A, Dupaix C, González-Burgos M (2009) A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ Equ Appl 1(3):427–457MathSciNetMATHGoogle Scholar
  6. 6.
    Ammar Khodja F, Benabdallah A, Dupaix C, González-Burgos M (2009) A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems. J Evol Equ 9(2):267–291MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2011) The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J Math Pures Appl (9) 96(6):555–590MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2011) Recent results on the controllability of linear coupled parabolic problems: a survey. Math Control Relat Fields 1(3):267–306MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2014) Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences. J Funct Anal 267(7):2077–2151MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2016) New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence (English summary). J Math Anal Appl 444(2):1071–1113Google Scholar
  11. 11.
    Ammar-Khodja F, Chouly F, Duprez M (2016) Partial null controllability of parabolic linear systems (English summary). Math Control Relat Fields 6(2):185–216MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Anantharaman N, Léautaud M, Macià F (2016) Wigner measures and observability for the Schrödinger equation on the disk (English summary). Invent Math 206(2):485–599Google Scholar
  13. 13.
    Benabdallah A, Boyer F, González-Burgos M, Olive G (2014) Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the \(N\)-dimensional boundary null controllability in cylindrical domains. SIAM J Control Optim 52(5):2970–3001MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Control Optim 30(5):1024–1065MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Boyer F, Olive G (2014) Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Math Control Relat Fields 4(3):263–287MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Coron J-M, Guerrero S, Rosier L (2010) Null controllability of a parabolic system with a cubic coupling term. SIAM J Control Optim 48(8):5629–5653MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Coron J-M, Lissy P (2014) Local null controllability of the three-dimensional Navier–Stokes system with a distributed control having two vanishing components. Invent Math 198(3):833–880MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Coron Jean-Michel (1992) Global asymptotic stabilization for controllable systems without drift. Math Control Sign Syst 5(3):295–312MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Coron J-M (2007) Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. Am Math Soc, Providence, RIGoogle Scholar
  20. 20.
    Cîndea N, Tucsnak M (2010) Internal exact observability of a perturbed Euler–Bernoulli equation. Ann Acad Rom Sci Ser Math Appl 2(2):205–221MathSciNetMATHGoogle Scholar
  21. 21.
    Dehman B, Lebeau G (2009) Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J Control Optim 48(2):521–550MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Duprez M, Lissy P (2016) Indirect controllability of some linear parabolic systems of m equations with m-1 controls involving coupling terms of zero or first order. J Math Pures Appl (9) 106(5):905–934MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dehman B, Le Rousseau J, Léautaud M (2014) Controllability of two coupled wave equations on a compact manifold. Arch Ration Mech Anal 211(1):113–187MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Sylvain E, Enrique Z (2010) A systematic method for building smooth controls for smooth data. Discrete Continuous Dyn Syst Ser B 14(4):1375–1401MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ervedoza S, Zuazua E (2011) Sharp observability estimates for heat equations. Arch Ration Mech Anal 202(3):975–1017MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    González-Burgos M, de Teresa L (2010) Controllability results for cascade systems of \(m\) coupled parabolic PDEs by one control force. Port Math 67(1):91–113MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    González-Burgos M, Pérez-García R (2006) Controllability results for some nonlinear coupled parabolic systems by one control force. Asymptot Anal 46(2):123–162MathSciNetMATHGoogle Scholar
  28. 28.
    Gromov M (1986) Partial differential relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, BerlinGoogle Scholar
  29. 29.
    Komornik V, Loreti P (2005) Fourier series in control theory. Springer monographs in mathematics. Springer, New YorkMATHGoogle Scholar
  30. 30.
    Lebeau G (1992) Contrôle de l’équation de Schrödinger. J Math Pures Appl (9) 71(3):267–291MathSciNetMATHGoogle Scholar
  31. 31.
    Lopez-Garcia M, Mercado A, de Teresa L (2015) Null controllability of a cascade system of Schrdödinger equations (Submitted)Google Scholar
  32. 32.
    Lions J-L (1988) Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, volume 8 of Recherches en Mathématiques Appliquées. Masson, Paris, 1988. Contrôlabilité exacte. (Exact controllability), With appendices by Zuazua E, Bardos C, Lebeau G and Rauch JGoogle Scholar
  33. 33.
    Lissy P (2013) Sur la contrôlabilité et son coût pour quelques équations aux dérivées partielles. PhD thesis, Université Pierre et Marie CurieGoogle Scholar
  34. 34.
    Li T, Rao B (2015) On the exactly synchronizable state to a coupled system of wave equations. Port Math 72(2–3):83–100MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Li T, Rao B (2016) Criteria of Kalman’s type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls. SIAM J Control Optim 54(1):49–72MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Li T, Rao B (2016) Exact synchronization by groups for a coupled system of wave equations with Dirichlet boundary controls. J Math Pures Appl (9) 105(1):86–101MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Miller L (2006) The control transmutation method and the cost of fast controls. SIAM J Control Optim 45(2):762–772MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Phung KD (2001) Observability and control of Schrödinger equations. SIAM J Control Optim 40(1):211–230MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Rosier L, de Teresa L (2011) Exact controllability of a cascade system of conservative equations. C R Math Acad Sci Paris 349(5–6):291–296MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Silverman LM, Meadows HE (1965) Controllability and time-variable unilateral networks. IEEE Trans Circ Theory CT 12:308–314MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zuazua E (2016) Stable observation of additive superpositions of Partial differential equations. Syst Control Lett 93:21–29MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions, CNRS UMR 7598Université Pierre et Marie Curie (Univ. Paris 6)ParisFrance
  2. 2.CEREMADEUniversité Paris-Dauphine & CNRS UMR 7534, PSL Research UniversityParisFrance

Personalised recommendations