On conditions of oscillations and multi-homogeneity

Original Article

Abstract

The notion of homogeneity in the bi-limit from Andrieu et al. (SIAM J Control Optim 47(4):1814–1850, 2008) is extended to local homogeneity and then to homogeneity in the multi-limit. The converse Lyapunov/Chetaev theorems on (homogeneous) system instability are obtained. The problem of oscillation detection for nonlinear systems is addressed. The sufficient conditions of oscillation existence for systems homogeneous in the multi-limit are formulated. The proposed approach estimates the number of oscillating modes and the regions of their location. Efficiency of the technique is demonstrated on several examples.

Keywords

Nonlinear systems Homogeneity Instability Oscillations 

References

  1. 1.
    Andrieu V, Praly L, Astolfi A (2008) Homogeneous approximation, recursive observer design, and output feedback. SIAM J Control Optim 47(4):1814–1850MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Zubov V (1958) On ordinary differential equations with generalized homogeneous right-hand sides. Izv Vuzov Mate 1(2):80–88MathSciNetGoogle Scholar
  3. 3.
    Rothschild L, Stein E (1976) Hypoelliptic differential operators and nilpotent groups. Acta Math 137:247–320MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bacciotti A, Rosier L (2001) Liapunov functions and stability in control theory. In: Lecture notes in control and information science, vol 267 Springer, BerlinGoogle Scholar
  5. 5.
    Hermes H (1991) Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. In: Differential equations: stability and control, vol 109. Marcel Dekker, New York, pp 249–260Google Scholar
  6. 6.
    Hong Y (2002) Finite-time stabilization and stabilizability of a class of controllable systems. Syst Control Lett 46:231–236MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Rosier L (1992) Homogeneous Lyapunov function for homogeneous continuous vector field. Syst Control Lett 19:467–473MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hermes H (1991) Nilpotent and high-order approximations of vector field systems. SIAM Rev 33(2):238–264MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bhat S, Bernstein D (2005) Geometric homogeneity with applications to finite-time stability. Math Control Signals Syst 17:101–127MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grüne L (2000) Homogeneous state feedback stabilization of homogeneous systems. SIAM J Control Optim 38(4):1288–1314MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kawski M (1991) Homogeneous feedback stabilization. In: Progress in systems and control theory: new trends in systems theory, vol 7. Birkhuser, BaselGoogle Scholar
  12. 12.
    Moulay E, Perruquetti W (2006) Finite time stability and stabilization of a class of continuous systems. J Math Anal Appl 323(2):1430–1443MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Praly L (1997) Generalized weighted homogeneity and state dependent time scale for linear controllable systems. In: Proceedings of the IEEE CDC 1997. IEEE, San Diego, pp 4342–4347Google Scholar
  14. 14.
    Sepulchre R, Aeyels D (1996) Stabilizability does not imply homogeneous stabilizability for controllable systems. SIAM J Control Optim 34(5):1798–1813MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Menard T, Moulay E, Perruquetti W (2010) A global high-gain finite-time observer. IEEE Trans Autom Control 55(6):1500–1506MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chetaev N (1961) The stability of motion. Pergamon Press, New York (English translation)MATHGoogle Scholar
  17. 17.
    Shnol E (2007) Chetaev function. Scholarpedia 2(9):4672. http://www.scholarpedia.org/article/Chetaev_function
  18. 18.
    Fradkov A, Pogromsky A (1998) Introduction to oscillations and chaos. World Scientific, SingaporeMATHGoogle Scholar
  19. 19.
    Leonov G, Burkin I, Shepelyavyi A (1992) Frequency methods in oscillation theory. Kluwer, Dordrecht (1995, in Russian)Google Scholar
  20. 20.
    Martinez S, Cortes J, Bullo F (2003) Analysis and design of oscillatory control systems. IEEE Trans Autom Control 48(7):1164–1177MathSciNetCrossRefGoogle Scholar
  21. 21.
    Meglio FD, Kaasa G-O, Petit N (2009) A first principle model for multiphase slugging flow in vertical risers. In: Proceedings of the 48th IEEE conference on decision and control. IEEE, Shanghai, pp 8244–8251Google Scholar
  22. 22.
    Yakubovich V (1973) Frequency oscillations conditions in nonlinear systems with stationary single nonlinearity. Sib Math J 14(5):1100–1129MATHGoogle Scholar
  23. 23.
    Yakubovich V (1975) Frequency conditions of oscillations in nonlinear control systems with one single-valued or hysteresis-type nonlinearity. Autom Remote Control 36(12):1973–1985MathSciNetMATHGoogle Scholar
  24. 24.
    Yakubovich V, Tomberg E (1989) Conditions for self-induced oscillations in nonlinear systems. Sib Math J 30:641–653MathSciNetMATHGoogle Scholar
  25. 25.
    Efimov D, Fradkov A (2009) Oscillatority of nonlinear systems with static feedback. SIAM J Control Optim 48(2):618–640MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Khalil H (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle RiverMATHGoogle Scholar
  27. 27.
    Lin Y, Sontag E, Wang Y (1996) A smooth converse lyapunov theorem for robust stability. SIAM J Control Optim 34(1):124–160MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Bernuau E, Polyakov A, Efimov D, Perruquetti W (2013) On extension of homogeneity notion for differential inclusions. In: Proceedings of the European control conference (ECC)Google Scholar
  29. 29.
    Efimov D, Fradkov A (2008) Yakubovichÿs oscillatority of circadian oscillations models. Math Biosci 216:187–191MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Khazin L, Shnol E (1991) Stability of critical equilibrium states. Manchester University Press, ManchesterMATHGoogle Scholar
  31. 31.
    Zubov V (1964) Methods of A. M. Lyapunov and their application. P. Noordhoff, GroningemMATHGoogle Scholar
  32. 32.
    Krasovskii N (1963) Stability of motion: applications of Lyapunov’s second method to differential systems and equations with delay. Stanford University Press, StanfordMATHGoogle Scholar
  33. 33.
    Rajamani R (1998) Observers for Lipschitz nonlinear systems. IEEE Trans Autom Control 43:397–401MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zhu F, Han Z (2002) A note on observers for Lipschitz nonlinear systems. IEEE Trans Autom Control 47:1751–1754MathSciNetCrossRefGoogle Scholar
  35. 35.
    Chen M-S, Chen C-C (2007) Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances. IEEE Trans Autom Control 52:2365–2370MathSciNetCrossRefGoogle Scholar
  36. 36.
    Arcak M, Kokotović P (2001) Nonlinear observers: a circle criterion design and robustness analysis. Automatica 37:1923–1930MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Efimov D, Perruquetti W (2011) Oscillating system design applying universal formula for control. In: Proceedings of the 50th IEEE CDC-ECC 2011, Orlando, pp 1747–1752Google Scholar
  38. 38.
    Bhatia NP, Szegö G (1967) Dynamical systems: stability theory and applications. Springer, New YorkCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Non-A teamInria, Parc Scientifique de la Haute BorneVilleneuve d’AscqFrance
  2. 2.CRIStAL (UMR-CNRS 9189)Ecole Centrale de LilleVilleneuve-d’AscqFrance
  3. 3.Department of Control Systems and InformaticsUniversity ITMOSaint PetersburgRussia

Personalised recommendations