Advertisement

Mathematics of Control, Signals, and Systems

, Volume 27, Issue 4, pp 551–578 | Cite as

Algebraic invariance conditions in the study of approximate (null-)controllability of Markov switch processes

  • Dan GoreacEmail author
  • Miguel Martinez
Original Article

Abstract

We aim at studying approximate null-controllability properties of a particular class of piecewise linear Markov processes (Markovian switch systems). The criteria are given in terms of algebraic invariance and are easily computable. We propose several necessary conditions and a sufficient one. The hierarchy between these conditions is studied via suitable counterexamples. Equivalence criteria are given in abstract form for general dynamics and algebraic form for systems with constant coefficients or continuous switching. The problem is motivated by the study of lysis phenomena in biological organisms and price prediction on spike-driven commodities.

Keywords

Approximate (null-)controllability Controlled piecewise deterministic Markov process Markov switch process  Invariance Stochastic gene networks 

Notes

Acknowledgments

The work of the first author has been partially supported by he French National Research Agency Project PIECE, number ANR-12-JS01-0006.

References

  1. 1.
    Barbu V, Răşcanu A, Tessitore G (2003) Carleman estimates and controllability of linear stochastic heat equations. Appl Math Optim 47(2):97–120MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barles G, Buckdahn R, Pardoux E (1997) Backward stochastic differential equations and integral-partial differential equations. Stoch Stoch Rep 60(1–2):57–83MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boxma O, Kaspi H, Kella O, Perry D (2005) On/off storage systems with state-dependent input, output, and switching rates. Probab Eng Inf Sci 19:1–14MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brémaud P (1981) Point processes and queues: martingale dynamics., Springer series in statisticsSpringer-Verlag, New YorkCrossRefzbMATHGoogle Scholar
  5. 5.
    Buckdahn R, Quincampoix M, Tessitore G (2006) A characterization of approximately controllable linear stochastic differential equations. In: Da Prato G, Tubaro L (eds) Stochastic partial differential equations and applications—VII, volume 245 of Lect. Notes Pure Appl Math, pp 53–60. Chapman & Hall/CRC, Boca Raton, FLGoogle Scholar
  6. 6.
    Confortola F, Fuhrman M (2013) Backward stochastic differential equations and optimal control of marked point processes. SIAM J Control Optim 51(5):3592–3623MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Confortola F, Fuhrman M (2014) Backward stochastic differential equations associated to jump Markov processes and applications. Stoch Process Appl 124(1):289–316MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Confortola F, Fuhrman M, Jacod J (2014) Backward stochastic differential equations driven by a marked point process: an elementary approach, with an application to optimal control. arXiv:1407.0876
  9. 9.
    Cook DL, Gerber AN, Tapscott SJ (1998) Modelling stochastic gene expression: implications for haploinsufficiency. Proc Natl Acad Sci USA 95:15641–15646CrossRefGoogle Scholar
  10. 10.
    Crudu A, Debussche A, Muller A, Radulescu O (2012) Convergence of stochastic gene networks to hybrid piecewise deterministic processes. Ann Appl Probab 22(5):1822–1859MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Crudu A, Debussche A, Radulescu O (2009) Hybrid stochastic simplifications for multiscale gene networks. BMC Syst Biol 3:89CrossRefGoogle Scholar
  12. 12.
    Curtain RF (1986) Invariance concepts in infinite dimensions. SIAM J Control Optim 24(5):1009–1030MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Davis MHA (1984) Piecewise-deterministic Markov-processes—a general-class of non-diffusion stochastic-models. J R Stat Soc Ser B-Methodol 46(3):353–388zbMATHGoogle Scholar
  14. 14.
    Davis MHA (1986) Control of piecewise-deterministic processes via discrete-time dynamic-programming. Lect Notes Control Inf Sci 78:140–150CrossRefGoogle Scholar
  15. 15.
    Davis MHA (1993) Markov models and optimization, volume 49 of Monographs on statistics and applied probability. Chapman & Hall, LondonCrossRefGoogle Scholar
  16. 16.
    Dempster MHA (1991) Optimal control of piecewise deterministic Markov processes. In: Davis MHA, Elliott RJ (eds) Applied stochastic analysis (London, 1989), volume 5 of Stochastics Monogr., pp 303–325. Gordon and Breach, New YorkGoogle Scholar
  17. 17.
    Fernández-Cara E, Garrido-Atienza MJ, Real J (1999) On the approximate controllability of a stochastic parabolic equation with a multiplicative noise. C R Acad Sci Paris Sér I Math 328(8):675–680CrossRefzbMATHGoogle Scholar
  18. 18.
    Golub GH, Pereyra V (1973) The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J Numer Anal 10(2):413–432MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goreac D (2009) Approximate controllability for linear stochastic differential equations in infinite dimensions. Appl Math Optim 60(1):105–132MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Goreac D (2014) Controllability properties of linear mean-field stochastic systems. Stoch Anal Appl 32(02):280–297MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Goreac D (2008) A Kalman-type condition for stochastic approximate controllability. CR Math 346(3–4):183–188MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Goreac D (2012) A note on the controllability of jump diffusions with linear coefficients. IMA J Math Control Inf 29(3):427–435Google Scholar
  23. 23.
    Goreac D (2012b) Viability, invariance and reachability for controlled piecewise deterministic Markov processes associated to gene networks. ESAIM-Control Optim Calc Var 18(2):401–426Google Scholar
  24. 24.
    Goreac D, Serea O-S (2012) Linearization techniques for controlled piecewise deterministic Markov processes; Application to Zubov’s method. Appl Math Optim 66:209–238MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Graham C, Robert P (2009) Interacting multi-class transmissions in large stochastic networks. Ann Appl Probab 19(6):2334–2361MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hautus MLJ (1969) Controllability and observability conditions of linear autonomous systems. Nederl Akad Wetensch Proc Ser A 72 Indag Math 31:443–448MathSciNetGoogle Scholar
  27. 27.
    Ikeda N, Watanabe (1981) Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York; Kodansha Ltd, TokyoGoogle Scholar
  28. 28.
    Jacob B, Partington JR (2006) On controllability of diagonal systems with one-dimensional input space. Syst Control Lett 55(4):321–328MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jacob B, Zwart H (2001) Exact observability of diagonal systems with a finite-dimensional output operator. Syst Control Lett 43(2):101–109MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jacobsen M (2006) Point process theory and applications. Marked point and piecewise deterministic processes. Birkhäuser Verlag GmbH, BerlinGoogle Scholar
  31. 31.
    Liu YZ, Peng SG (2002) Infinite horizon backward stochastic differential equation and exponential convergence index assignment of stochastic control systems. Automatica 38(8):1417–1423MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Merton RC (1976) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3:125–144CrossRefzbMATHGoogle Scholar
  33. 33.
    Pardoux E, Peng SG (1990) Adapted solution of a backward stochastic differential equation. Syst Control Lett 14(1):55–61MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Peng S (1994) Backward stochastic differential equation and exact controllability of stochastic control systems. Prog Nat Sci (Engl Ed) 4:274–284Google Scholar
  35. 35.
    Rolski T, Schmidli H, Schmidt V, Teugels J (2009) Stochastic processes for insurance and finance, volume 505 of Wiley series in probability and statistics. Wiley, New YorkGoogle Scholar
  36. 36.
    Russell D, Weiss G (1994) A general necessary condition for exact observability. SIAM J Control Optim 32(1):1–23MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Schmidt EJPG, Stern RJ (1980) Invariance theory for infinite dimensional linear control systems. Appl Math Optim 6(2):113–122MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sirbu M, Tessitore G (2001) Null controllability of an infinite dimensional SDE with state- and control-dependent noise. Syst Control Lett 44(5):385–394MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Soner HM (1986) Optimal control with state-space constraint. II. SIAM J Control Optim 24(6):1110–1122MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wainrib G, Michèle T, Pakdaman K (2010) Intrinsic variability of latency to first-spike. Biol Cybern 103(1):43–56CrossRefGoogle Scholar
  41. 41.
    Xia J (2000) Backward stochastic differential equation with random measures. Acta Math Appl Sin (Engl Ser) 16(3):225–234CrossRefzbMATHGoogle Scholar
  42. 42.
    Yong J, Zhou XY (1999) Stochastic controls. Hamiltonian systems and HJB equations. Springer-Verlag, New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRSMarne-la-ValléeFrance

Personalised recommendations