Advertisement

Model reduction of time-delay systems using position balancing and delay Lyapunov equations

  • Elias Jarlebring
  • Tobias Damm
  • Wim Michiels
Original Article

Abstract

Balanced truncation is a standard and very natural approach to approximate dynamical systems. We present a version of balanced truncation for model order reduction of linear time-delay systems. The procedure is based on a coordinate transformation of the position and preserves the delay structure of the system. We therefore call it (structure-preserving) position balancing. To every position, we associate quantities representing energies for the controllability and observability of the position. We show that these energies can be expressed explicitly in terms of the solutions to corresponding delay Lyapunov equations. Apart from characterizing the energies, we show that one block of the (operator) controllability and observability Gramians in the operator formulation of the time-delay system can also be characterized with the delay Lyapunov equation. The delay Lyapunov equation undergoes a contragredient transformation when we apply the position coordinate transformation and we propose to truncate it in a classical fashion, such that positions which are only weakly connected to the input and the output in the sense of the energy concepts are removed.

Keywords

Time-delay systems Model reduction Balanced truncation  Lyapunov equations  

Notes

Acknowledgments

This work has been supported by the Programme of Interuniversity Attraction Poles of the Belgian Federal Science Policy Office (IAP P6-DYSCO), by OPTEC, the Optimization in Engineering Center of the K.U. Leuven, and by the project STRT1-09/33 of the K.U. Leuven Research Council. The first author is supported by the Dahlquist research fellowship.

References

  1. 1.
    Antoulas A (2005) Approximation dynamical systems. In: Society for industrial and applied mathematics (SIAM). Philadelphia, PAGoogle Scholar
  2. 2.
    Antoulas A, Sorensen D, Gugercin S (2001) A survey of model reduction methods for large-scale systems. Contemp Math 280:193–219MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartels R, Stewart GW (1972) Solution of the matrix equation \(AX+XB=C\). Comm ACM 15(9):820–826CrossRefGoogle Scholar
  4. 4.
    Beattie C, Gugercin S (2009) Interpolatory projection methods for structure-preserving model reduction. Syst Control Lett 58(3):225–232MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Benner P, Mehrmann V, Sorensen D (eds) (2005) Dimension reduction of large-scale systems. Springer, BerlinzbMATHGoogle Scholar
  6. 6.
    Benner P, Saak J (2011) Efficient balancing based MOR for large scale second order systems. Math Comput Model Dyn Syst 17(2):123–143MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chahlaoui Y, Lemonnier D, Vandendorpe A, Dooren PV (2006) Second-order balanced truncation. Linear Algebra Appl 415:373–384MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Springer, New YorkzbMATHCrossRefGoogle Scholar
  9. 9.
    Hale J, Verduyn Lunel SM (1993) Introduction to functional differential equations. Springer, BerlinzbMATHGoogle Scholar
  10. 10.
    Harkort C, Deutscher J (2011) Krylov subspace methods for linear infinite-dimensional systems. IEEE Trans Autom Control 56(2):441–447MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huesca E, Mondié S, Santos J (2009) Polynomial approximations of the Lyapunov matrix of a class of time delay systems. In: Proceedings of the 8th IFAC workshop on time-delay systems, Sinaia, RomaniaGoogle Scholar
  12. 12.
    Jarlebring E, Vanbiervliet J, Michiels W (2011) Characterizing and computing the \({\cal H}_{2}\) norm of time-delay systems by solving the delay Lyapunov equation. IEEE Trans Autom Control 56(4):814–825Google Scholar
  13. 13.
    Kharitonov V (2004) Lyapunov-Krasovskii functionals for scalar time delay equations. Syst Control Lett 51(2):133–149MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kharitonov V (2005) Lyapunov functionals and Lyapunov matrices for neutral type time delay systems: a single delay case. Int J Control 78(11):783–800MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kharitonov V (2006) Lyapunov matrices for a class of time delay systems. Syst Control Lett 55(7):610–617MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kharitonov V, Hinrichsen D (2004) Exponential estimates for time delay systems. Syst Control Lett 53(5):395–405MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kharitonov V, Plischke E (2006) Lyapunov matrices for time-delay systems. Syst Control Lett 55(9):697–706MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kharitonov V, Zhabko AP (2003) Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica 39(1):15–20MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Mäkilä P, Partington J (1999) Laguerre and Kautz shift approximations of delay systems. Int J Control 72(10):932–946zbMATHCrossRefGoogle Scholar
  20. 20.
    Mäkilä P, Partington J (1999) Shift operator induced approximations of delay systems. SIAM J Control Optim 37(6):1897–1912MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Mastinšek M (1994) Adjoints of solution semigroups and identifiability of delay differential equations in Hilbert spaces. Acta Math Univ Comen LXIII 2:193–206Google Scholar
  22. 22.
    Meyer DG, Srinivasan S (1996) Balancing and model reduction for second-order form linear systems. IEEE Trans Autom Control 41(11):1632–1644MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Michiels W (2002) Stability and stabilization of time-delay systems. Ph.D. thesis, Katholieke universiteit LeuvenGoogle Scholar
  24. 24.
    Michiels W, Jarlebring E, Meerbergen K (2011) Krylov-based model order reduction of time-delay systems. SIAM J Matrix Anal Appl 32(4):1399–1421MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Niculescu SI (2001) Delay effects on stability. A robust control approach. Springer, LondonzbMATHGoogle Scholar
  26. 26.
    Ochoa G, Kharitonov V (2005) Lyapunov matrices for neutral type time delay systems. In: Proceedings of the 2nd International Conference on Electrical and Electronics Engineering, Mexico City, MexicoGoogle Scholar
  27. 27.
    Ochoa G, Velázquez-Velázquez J, Kharitonov V, Mondié S (2007) Lyapunov matrices for neutral type time delay systems. In: Proceedings of the 7th IFAC workshop on time delay systems, Nantes, FranceGoogle Scholar
  28. 28.
    Ouellette DV (1981) Schur complements and statistics. Linear Algebra Appl 36:187–295MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Partington J (2004) Model reduction of delay systems. In: Blondel V, Megretski A (eds) Unsolved problems in mathematical systems and control theory. Princeton university press, Princeton, pp 29–32Google Scholar
  30. 30.
    Plischke E (2005) Transient effects of linear dynamical systems. Ph.D. thesis, Universität BremenGoogle Scholar
  31. 31.
    Reis T, Stykel T (2008) Balanced truncation model reduction of second-order systems. Math Comput Model Dyn Syst 14(5):391–406MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Saadvandi M, Meerbergen K, Jarlebring E (2012) On dominant poles and model reduction of second order time-delay systems. Appl Numer Math 62(1):21–34MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Vanbiervliet J, Michiels W, Jarlebring E (2011) Using spectral discretisation for the optimal \({\cal H}_{2}\) design of time-delay systems. Int J Control 84(2):228–241Google Scholar
  34. 34.
    Velázquez-Velázquez J, Kharitonov V (2009) Lyapunov-Krasovskii functionals for scalar neutral type time delay equation. Syst Control Lett 58(1):17–25Google Scholar
  35. 35.
    Yan B, Tan S, McGaughy B (2008) Second-order balanced truncation for passive order reduction of RLCK circuits. IEEE Trans Circuits Syst II Analog Digit Signal Process 55:942–946CrossRefGoogle Scholar
  36. 36.
    Zigic D, Watson L, Beattie C (1993) Contragredient transformations applied to optimal projection equations. Linear Algebra Appl 188–189:665–676MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department of MathematicsKTHStockholmSweden
  2. 2.Technische Universität Kaiserslautern, Fachbereich Mathematik, Erwin Schrödinger StraßeKaiserslauternGermany
  3. 3.Department of Computer ScienceKU LeuvenHeverleeBelgium

Personalised recommendations