Advertisement

Input-to-state stability of infinite-dimensional control systems

  • Sergey Dashkovskiy
  • Andrii Mironchenko
Original Article

Abstract

We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs, the existence of an ISS-Lyapunov function implies the ISS of a system. Then for the case of systems described by abstract equations in Banach spaces, we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system, the linear approximation of which is ISS. In order to study the interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.

Keywords

Nonlinear control systems Infinite-dimensional systems  Input-to-state stability Lyapunov methods Linearization 

Notes

Acknowledgments

This research was funded by the German Research Foundation (DFG) as a part of Collaborative Research Centre 637 “Autonomous Cooperating Logistic Processes—A Paradigm Shift and its Limitations”. We thank the anonymous reviewers for their comments and suggestions, which led to improvements in the presentation of the results.

References

  1. 1.
    Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Texts in applied mathematics. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Dachkovski S (2003) Anisotropic function spaces and related semi-linear hypoelliptic equations. Math Nachr 248(249):40–61MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dashkovskiy S, Efimov D, Sontag E (2011) Input to state stability and allied system properties. Autom Remote Control 72:1579–1614MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dashkovskiy S, Mironchenko A (2010) On the uniform input-to-state stability of reaction-diffusion systems. In: Proceedings of the 49th IEEE conference on decision and control, Atlanta, GA, USA, December 15–17, 2010, pp 6547–6552Google Scholar
  5. 5.
    Dashkovskiy S, Rüffer BS, Wirth FR (2006) An ISS Lyapunov function for networks of ISS systems. In: Proceedings of the 17th international symposium on mathematical theory of networks and systems (MTNS), Kyoto, Japan, July 24–28, 2006, pp 77–82Google Scholar
  6. 6.
    Dashkovskiy S, Rüffer BS, Wirth FR (2007) An ISS small gain theorem for general networks. Math Control Signals Syst 19(2):93–122zbMATHCrossRefGoogle Scholar
  7. 7.
    Dashkovskiy SN, Rüffer BS (2010) Local ISS of large-scale interconnections and estimates for stability regions. Syst Control Lett 59(3–4):241–247Google Scholar
  8. 8.
    Dashkovskiy SN, Rüffer BS, Wirth FR (2010) Small gain theorems for large scale systems and construction of ISS Lyapunov functions. SIAM J Control Optim 48(6):4089–4118MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Engel KJ, Nagel R (2000) One-parameter semigroups for linear evolution equations. Graduate texts in mathematics, vol 194. Springer, New York. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. SchnaubeltGoogle Scholar
  10. 10.
    Evans LC (1998) Partial differential equations. Graduate studies in mathematics, vol 19. American Mathematical Society, ProvidenceGoogle Scholar
  11. 11.
    Grüne L (2002) Asymptotic behavior of dynamical and control systems under perturbation and discretization. Lecture notes in mathematics. Springer, BerlinCrossRefGoogle Scholar
  12. 12.
    Grüne L (2002) Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Trans Autom Control 47(9):1499–1504CrossRefGoogle Scholar
  13. 13.
    Hahn W (1967) Stability of motion. Translated from the German manuscript by Arne P. Baartz. Die Grundlehren der mathematischen Wissenschaften, Band 138. Springer, New YorkGoogle Scholar
  14. 14.
    Henry D (1981) Geometric theory of semilinear parabolic equations. Lecture notes in mathematics. Springer, BerlinGoogle Scholar
  15. 15.
    Hespanha JP, Liberzon D, Teel AR (2008) Lyapunov conditions for input-to-state stability of impulsive systems. Autom J IFAC 44(11):2735–2744MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hille E, Phillips RS (1996) Functional analysis and semi-groups. American mathematical society colloquium publications, vol 31. American Mathematical Society, ProvidenceGoogle Scholar
  17. 17.
    Jayawardhana B, Logemann H, Ryan EP (2008) Infinite-dimensional feedback systems: the circle criterion and input-to-state stability. Commun Inf Syst 8(4):413–414MathSciNetzbMATHGoogle Scholar
  18. 18.
    Jayawardhana B, Logemann H, Ryan EP (2011) The circle criterion and input-to-state stability. Control Syst IEEE 31(4):32–67MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jiang ZP, Mareels IMY, Wang Y (1996) A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Autom J IFAC 32(8):1211–1215MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Karafyllis I (2007) A system-theoretic framework for a wide class of systems. II. Input-to-output stability. J Math Anal Appl 328(1):466–486MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Karafyllis I, Jiang ZP (2010) New results in trajectory-based small-gain with application to the stabilization of a chemostat. http://arxiv.org/abs/1002.4489
  22. 22.
    Karafyllis I, Jiang ZP (2011) Stability and stabilization of nonlinear systems. Communications and control engineering series. Springer, LondonCrossRefGoogle Scholar
  23. 23.
    Karafyllis I, Jiang ZP (2011) A vector small-gain theorem for general non-linear control systems. IMA J Math Control Inf 28(3):309–344MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lin Y, Sontag ED, Wang Y (1996) A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim 34(1):124–160MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Mazenc F, Prieur C (2011) Strict Lyapunov functions for semilinear parabolic partial differential equations. Math Control Relat Fields 1:231–250MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Mitrinović DS, Pečarić JE, Fink AM (1991) Inequalities involving functions and their integrals and derivatives. Mathematics and its applications (East European Series), vol 53. Kluwer, DordrechtGoogle Scholar
  27. 27.
    Murray JD (2003) Mathematical biology. II Spatial models and biomedical applications. Interdisciplinary applied mathematics, vol 18, 3rd edn. Springer, New YorkGoogle Scholar
  28. 28.
    Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Applied mathematical sciences, vol 44. Springer, New YorkGoogle Scholar
  29. 29.
    Pepe P, Jiang ZP (2006) A Lyapunov–Krasovskii methodology for ISS and iISS of time-delay systems. Syst Control Lett 55(12):1006–1014MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Prieur C, Mazenc F (2012) ISS-lyapunov functions for time-varying hyperbolic systems of balance laws. In: Mathematics of control, signals, and systems (MCSS), pp 1–24Google Scholar
  31. 31.
    Rüffer B (2007) Monotone dynamical systems, graphs, and stability of large-scale interconnected systems. PhD thesis, Fachbereich 3 (Mathematik & Informatik) der Universität BremenGoogle Scholar
  32. 32.
    Rüffer BS (2010) Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean \(n\)-space. Positivity 14(2):257–283MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Autom Control 34(4):435–443MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Sontag ED (1998) Mathematical control theory: deterministic finite-dimensional systems. Texts in applied mathematics, vol 6, 2nd edn. Springer, New YorkGoogle Scholar
  35. 35.
    Sontag ED (2008) Input to state stability: basic concepts and results. In: Nonlinear and optimal control theory. Lecture notes in mathematics, vol 1932. Springer, Berlin, pp 163–220Google Scholar
  36. 36.
    Sontag ED, Wang Y (1995) On characterizations of the input-to-state stability property. Syst Control Lett 24(5):351–359MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Sontag ED, Wang Y (1996) New characterizations of input-to-state stability. IEEE Trans Autom Control 41(9):1283–1294MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72CrossRefGoogle Scholar
  39. 39.
    Willems JC (1972) Dissipative dynamical systems. I. General theory. Arch Ration Mech Anal 45:321–351MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of Applied Sciences ErfurtErfurtGermany
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of BremenBremenGermany

Personalised recommendations