Advertisement

ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws

  • Christophe PrieurEmail author
  • Frédéric Mazenc
Original Article

Abstract

A family of time-varying hyperbolic systems of balance laws is considered. The partial differential equations of this family can be stabilized by selecting suitable boundary conditions. For the stabilized systems, the classical technique of construction of Lyapunov functions provides a function which is a weak Lyapunov function in some cases, but is not in others. We transform this function through a strictification approach to obtain a time-varying strict Lyapunov function. It allows us to establish asymptotic stability in the general case and a robustness property with respect to additive disturbances of input-to-state stability (ISS) type. Two examples illustrate the results.

Keywords

Strictification Lyapunov function Hyperbolic PDE System of balance laws 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastin G, Coron J-M, d’Andréa Novel B (2008) Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks. In: Lecture notes for the pre-congress workshop on complex embedded and networked control systems, Seoul, Korea, 17th IFAC World CongressGoogle Scholar
  2. 2.
    Bastin G, Coron J-M, d’Andréa Novel B (2009) On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw Heterog Media 4(2): 177–187MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cazenave T, Haraux A (1998) An introduction to semilinear evolution equations. Oxford University Press, OxfordzbMATHGoogle Scholar
  4. 4.
    Colombo RM, Guerra G, Herty M, Schleper V (2009) Optimal control in networks of pipes and canals. SIAM J Control Optim 48: 2032–2050MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Coron J-M (1999) On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain. SIAM J Control Optim 37(6): 1874–1896MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coron J-M, Bastin G, d’Andréa Novel B (2008) Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J Control Optim 47(3): 1460–1498MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coron J-M, d’Andréa Novel B, Bastin G (2007) A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans Autom Control 52(1): 2–11CrossRefGoogle Scholar
  8. 8.
    Coron J-M, Trélat E (2006) Global steady-state stabilization and controllability of 1D semilinear wave equations. Commun Contemp Math 8(4): 535–567MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dashkovskiy S, Mironchenko A (2010) On the uniform input-to-state stability of reaction-diffusion systems. In: 49th IEEE conference on decision and control (CDC), Atlanta, GA, USA, pp 6547–6552Google Scholar
  10. 10.
    Diagne A, Bastin G, Coron J-M (2011) Lyapunov exponential stability of linear hyperbolic systems of balance laws. Automatica (to appear)Google Scholar
  11. 11.
    Dick M, Gugat M, Leugering G (2010) Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Netw Heterog Media 5(4): 691–709MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dos Santos V, Prieur C (2008) Boundary control of open channels with numerical and experimental validations. IEEE Trans Control Syst Technol 16(6): 1252–1264CrossRefGoogle Scholar
  13. 13.
    Graf WH (1984) Hydraulics of sediment transport. Water Resources Publications, Highlands Ranch, ColoradoGoogle Scholar
  14. 14.
    Graf WH (1998) Fluvial hydraulics. Wiley, New YorkGoogle Scholar
  15. 15.
    Gugat M, Herty M, Klar A, Leugering G (2005) Optimal control for traffic flow networks. J Optim Theory Appl 126(3): 589–616MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gugat M, Leugering G (2009) Global boundary controllability of the Saint-Venant system for sloped canals with friction. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 26(1): 257–270MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Haut B, Bastin G (2007) A second order model of road junctions in fluid models of traffic networks. Netw Heterog Media 2(2): 227–253MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hudson J, Sweby PK (2003) Formulations for numerically approximating hyperbolic systems governing sediment transport. J Scientif Comput 19: 225–252MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jayawardhana B, Logemann H, Ryan EP (2011) The circle criterion and input-to-state stability. IEEE Control Syst 31(4): 32–67MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kmit I (2008) Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems. Int J Dyn Syst Differ Equ 1(3): 191–195MathSciNetGoogle Scholar
  21. 21.
    Krstic M, Smyshlyaev A (2008) Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst Control Lett 57: 750–758MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li T-T (1994) Global classical solutions for quasilinear hyperbolic systems. RAM: Research in Applied Mathematics, vol 32. Masson, ParisGoogle Scholar
  23. 23.
    Löfberg J (2004) Yalmip: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, TaiwanGoogle Scholar
  24. 24.
    Luo Z-H, Guo B-Z, Morgul O (1999) Stability and stabilization of infinite dimensional systems and applications. Communications and Control Engineering. Springer, New YorkCrossRefGoogle Scholar
  25. 25.
    Malaterre P-O, Rogers DC, Schuurmans J (1998) Classification of canal control algorithms. ASCE J Irrigation Drainage Eng 124(1): 3–10CrossRefGoogle Scholar
  26. 26.
    Malisoff M, Mazenc F (2009) Constructions of strict Lyapunov functions. Communications and Control Engineering Series. Springer, LondonCrossRefGoogle Scholar
  27. 27.
    Mazenc F, Malisoff M, Bernard O (2009) A simplified design for strict Lyapunov functions under Matrosov conditions. IEEE Trans Autom Control 54(1): 177–183MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mazenc F, Malisoff M, Lin Z (2008) Further results on input-to-state stability for nonlinear systems with delayed feedbacks. Automatica 44(9): 2415–2421MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mazenc F, Nesic D (2007) Lyapunov functions for time-varying systems satisfying generalized conditions of Matrosov theorem. Math Control Signals Syst 19: 151–182MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mazenc F, Prieur C (2011) Strict Lyapunov functions for semilinear parabolic partial differential equations. Math Control Related Fields 1(2): 231–250MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Pham VT, Georges D, Besancon G (2010) Predictive control with guaranteed stability for hyperbolic systems of conservation laws. In: 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, pp 6932–6937Google Scholar
  32. 32.
    Prieur C, de Halleux J (2004) Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations. Syst Control Lett 52(3–4): 167–178CrossRefzbMATHGoogle Scholar
  33. 33.
    Prieur C, Winkin J, Bastin G (2008) Robust boundary control of systems of conservation laws. Math Control Signals Syst 20(2): 173–197MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Shampine LF (2005) Solving hyperbolic PDEs in Matlab. Appl Numer Anal Comput Math 2: 346–358MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Shampine LF (2005) Two-step Lax–Friedrichs method. Appl Math Lett 18: 1134–1136MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Slemrod M (1974) A note on complete controllability and stabilizability for linear control systems in Hilbert space. SIAM J Control 12: 500–508MathSciNetCrossRefGoogle Scholar
  37. 37.
    Sontag ED (2007) Input to state stability: Basic concepts and results. In: Nonlinear and optimal control theory, pp 163–220. Springer, BerlinGoogle Scholar
  38. 38.
    Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653. http://sedumi.mcmaster.ca/
  39. 39.
    Xu C-Z, Sallet G (2002) Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems. ESAIM Control Optim Calculus Var 7: 421–442MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Automatic ControlGipsa-labGrenoble CedexFrance
  2. 2.Team INRIA DISCO, L2S, CNRS-SupelecGif-sur-YvetteFrance

Personalised recommendations