Advertisement

Mathematics of Control, Signals, and Systems

, Volume 22, Issue 4, pp 295–316 | Cite as

Stabilization of discrete 2D behaviors by regular partial interconnection

  • Diego NappEmail author
  • Paula Rocha
Original Article

Abstract

In this work, we consider linear, shift-invariant and complete two-dimensional (2D) discrete systems from a behavioral point of view. In particular, we examine behaviors with two types of variables: the variables that we are interested to control (the to-be-controlled variables) and the variables on which we are allowed to enforce restrictions (the control variables). The main purpose of this contribution is to derive necessary and sufficient conditions for the stabilization of the to-be-controlled variables by ‘attaching’ a controller to the control variables. This problem turns out to be related to the decomposition of a given behavior into the sum of two sub-behaviors. Moreover, we show that under certain conditions, it is possible to obtain a constructive solution and characterize the structure of the to-be-controlled behavior.

Keywords

Two-dimensional behaviors Partial regular interconnection Stabilization Finite-dimensional autonomous behaviors 

Mathematics Subject Classification (2000)

93B05 93B07 93B25 93C05 93C35 93C65 93D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belur MN, Trentelman HL (2002) Stabilization, pole placement, and regular implementability. IEEE Trans Automat Control 47(5): 735–744MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bisiacco M, Valcher ME (2001) A note on the direct sum decomposition of two-dimensional behaviors. IEEE Trans Circuits Syst I Fund Theory Appl 48(4): 490–494MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bisiacco M, Valcher ME (2005) Two-dimensional behavior decompositions with finite-dimensional intersection: a complete characterization. Multidimens Syst Signal Process 16(3): 335–354MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Fornasini E, Rocha P, Zampieri S (1993) State space realization of 2-D finite-dimensional behaviours. SIAM J Control Optim 31(6): 1502–1517MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Julius AA, Polderman JW, van der Schaft A (2008) Parametrization of the regular equivalences of the canonical controller. IEEE Trans Automat Control 53(4)Google Scholar
  6. 6.
    Julius AA, Willems JC, Belur MN, Trentelman HL (2005) The canonical controllers and regular interconnection. Syst Control Lett 54(8): 787–797MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Napp AD, Rocha P (2009) Implementation of 2D strongly autonomous behaviors by full and partial interconnections. Lect Notes Control Inform Sci (Springer) 389: 369–378CrossRefGoogle Scholar
  8. 8.
    Napp AD, Rocha P (2010) Control of 2D behaviors by partial interconnection. In: Proceedings of the 19th international symposium on mathematical theory of networks and systems, MTNS 2010, Budapest, HungaryGoogle Scholar
  9. 9.
    Napp AD, Rocha P (2010) Strongly autonomous interconnections and stabilization of 2D behaviors. Asian J Control 12(2): 127–135MathSciNetCrossRefGoogle Scholar
  10. 10.
    Oberst U (1990) Multidimensional constant linear systems. Acta Appl Math 20(1–2): 1–175MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Pillai H, Shankar S (1998) A behavioral approach to control of distributed systems. SIAM J Control Optim 37(2): 388–408MathSciNetCrossRefGoogle Scholar
  12. 12.
    Polderman JW, Willems JC (1998) Introduction to mathematical systems theory, a behavioral approach, volume 26 of texts in applied mathematics. Springer, New YorkGoogle Scholar
  13. 13.
    Praagman C, Trentelman HL, Zavala YR (2007) On the parametrization of all regularly implementing and stabilizing controllers. SIAM J Control Optim 45(6): 2035–2053 (electronic)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Rocha P (1990) Structure and representation of 2D systems. PhD thesis, University of Groningen, The NetherlandsGoogle Scholar
  15. 15.
    Rocha P (2002) Feedback control of multidimensional behaviors. Syst Control Lett 45: 207–215MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Rocha P (2005) Canonical controllers and regular implementation of nD behaviors. In Proceedings of the 16th IFAC World CongressGoogle Scholar
  17. 17.
    Rocha P (2008) Stabilization of multidimensional behaviors. Multidimens Syst Signal Process 19: 273–286MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Rocha P, Wood J (2001) Trajectory control and interconnection of 1D and nD systems. SIAM J Control Optim 40(1): 107–134MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Trentelman HL, Avelli D. Napp (2007) On the regular implementability of nD systems. Syst Control Lett 56(4): 265–271zbMATHCrossRefGoogle Scholar
  20. 20.
    Valcher ME (2000) Characteristic cones and stability properties of two-dimensional autonomous behaviors. IEEE Trans Circuits Systems Part I CAS-47(3) :290–302Google Scholar
  21. 21.
    Valcher ME (2000) On the decomposition of two-dimensional behaviors. Multidimens Syst Signal Process 11(1–2): 49–65MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    van der Schaft AJ (2003) Achievable behavior of general systems. Syst Control Lett 49(2): 141–149MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Willems JC (1991) Paradigms and puzzles in the theory of dynamical systems. IEEE Trans Automat Control 36(3): 259–294MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Willems JC (1997) On interconnections, control, and feedback. IEEE Trans Automat Control 42(3): 326–339MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Wood J (2000) Modules and behaviours in nD systems theory. Multidimens Syst Signal Process 11(1–2): 11–48zbMATHCrossRefGoogle Scholar
  26. 26.
    Wood J, Oberst U, Rogers E, Owens DH (2000) A behavioral approach to the pole structure of one-dimensional and multidimensional linear systems. SIAM J Control Optim 38(2): 627–661MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Wood J, Sule VR, Rogers E (2005) Causal and stable input/output structures on multidimensional behaviors. SIAM J Control Optim 43(4): 1493–1520MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zerz E (1996) Primeness of multivariate polynomial matrices. Syst Control Lett 29(3): 139–145MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Zerz E, Lomadze V (2001) A constructive solution to interconnection and decomposition problems with multidimensional behaviors. SIAM J Control Optim 40(4): 1072–1086MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Ingenieria de Sistemas y AutomaticaUniversidad de ValladolidValladolidSpain
  2. 2.Department of Electrical and Computer Engineering, Faculty of EngineeringUniversity of OportoOportoPortugal

Personalised recommendations