Advertisement

Local exact controllability for Berger plate equation

  • Nicolae Cîndea
  • Marius TucsnakEmail author
Original Article

Abstract

We study the exact controllability of a nonlinear plate equation by the means of a control which acts on an internal region of the plate. The main result asserts that this system is locally exactly controllable if the associated linear Euler–Bernoulli system is exactly controllable. In particular, for rectangular domains, we obtain that the Berger system is locally exactly controllable in arbitrarily small time and for every open and nonempty control region.

Keywords

Local exact controllability Berger equation Nonlinear plate equation Spectral criterium 

References

  1. 1.
    Ball JM (1973) Initial-boundary value problems for an extensible beam. J Math Anal Appl 42: 61–90zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J Control Optim 30: 1024–1065zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berger HM (1955) A new approach to the analysis of large deflections of plates. J Appl Mech 22: 465–472zbMATHMathSciNetGoogle Scholar
  4. 4.
    Burq N, Zworski M (2004) Geometric control in the presence of a black box. J Am Math Soc 17: 443–471zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dickey RW (1970) Free vibrations and dynamic buckling of the extensible beam. J Math Anal Appl 29: 443–454zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dickey RW (1973) Dynamic stability of equilibrium states of the extensible beam. Proc Am Math Soc 41: 94–102zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dolecki S, Russell DL (1977) A general theory of observation and control. SIAM J Control Optim 15: 185–220zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jaffard S (1990) Contrôle interne exact des vibrations d’une plaque rectangulaire. Port Math 47: 423–429zbMATHMathSciNetGoogle Scholar
  9. 9.
    Kahane J-P (1962) Pseudo-périodicité et séries de Fourier lacunaires. Ann Sci École Norm Sup 79(3): 93–150zbMATHMathSciNetGoogle Scholar
  10. 10.
    Lasiecka I, Triggiani R (1991) Exact controllability and uniform stabilization of Euler–Bernoulli equations with boundary control only in \({\Delta w\vert_\Sigma}\) . Boll Un Mat Ital B 5(7): 665–702zbMATHMathSciNetGoogle Scholar
  11. 11.
    Lebeau G (1992) Contrôle de l’équation de Schrödinger. J Math Pures Appl 71(9): 267–291zbMATHMathSciNetGoogle Scholar
  12. 12.
    Menzala GP, Zuazua E (2000) Timoshenko’s beam equation as limit of a nonlinear one-dimensional von Kármán system. Proc R Soc Edinburgh Sect A 130: 855–875zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Miller L (2005) Controllability cost of conservative systems: resolvent condition and transmutation. J Funct Anal 218: 425–444zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nayfeh AH, Mook DT (1979) Nonlinear oscillations. In: Pure and applied mathematics. Wiley, New YorkGoogle Scholar
  15. 15.
    Perla Menzala G, Pazoto AF, Zuazua E (2002) Stabilization of Berger–Timoshenko’s equation as limit of the uniform stabilization of the von Kármán system of beams and plates. M2AN Math Model Numer Anal 36: 657–691zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ramdani K, Takahashi T, Tenenbaum G, Tucsnak M (2005) A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator. J Funct Anal 226: 193–229zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tenenbaum G, Tucsnak M (2009) Fast and strongly localized observation for the Schrödinger equation. Trans Am Math Soc 361: 951–977zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser advanced texts: Basler lehrbücher [Birkhäuser advanced texts: Basel textbooks]. Birkhäuser, Basel, pp xii + 483Google Scholar
  19. 19.
    Tucsnak M, Weiss G (2000) Simultaneous exact controllability and some applications. SIAM J Control Optim, 38: 1408–1427 (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zuazua E (1987) Contrôlabilité exacte d’un modèle de plaques vibrantes en un temps arbitrairement petit. C R Acad Sci Paris Sér I Math 304: 173–176zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.Institut Élie CartanNancy Université/CNRS/INRIAVandoeuvre-lès-Nancy CedexFrance

Personalised recommendations