Advertisement

Long-term study of a subdioecious Populus ×canescens family reveals sex lability of females and reproduction behaviour of cosexual plants

  • Maurizio SabattiEmail author
  • Muriel Gaudet
  • Niels A. Müller
  • Birgit Kersten
  • Cosimo Gaudiano
  • Giuseppe Scarascia Mugnozza
  • Matthias Fladung
  • Isacco Beritognolo
Original Article

Key message

Cosexual Populus ×canescens plants are inconstant females with life course plasticity of sex phenotype and can reproduce by selfing.

Abstract

Populus species are dioecious, but deviations from dioecy are reported in some cases. The objectives of this study were to investigate the phenotypic expression and the inheritance of subdioecy in a Populus ×canescens pedigree. The F1 progeny was monitored for sex during 14 years. Thirty per cent of individuals expressed deviations from dioecy and long-term plasticity of sex. Some plants started flowering as male, then became cosexual, and finally turned female. Two cosexual individuals were self-pollinated and generated a selfed progeny markedly impaired by inbreeding depression, but able to reproduce by outcrossing. Sex segregation of the F1 progeny statistically fitted the expected ratio 1:2:1 (female:male:cosexual). By analysis of DNA markers, the cosexual individuals were genetically clustered with the females. The segregation ratio and the genetic profile indicated that cosexual plants were female with altered sex phenotype. Linkage analysis identified a putative sex-determining region with suppressed recombination on chromosome 19 of the male Populus tremula parent. The male sex trait was linked to the pericentromeric region of the P. tremula chromosome 19, whereas the cosexual trait was linked to chromosome 19 of the female Populus alba parent. A genetic model is proposed to explain inheritance and phenotypic expression of sex.

Keywords

Cosexuality Poplar Self-compatibility Sex-determining region Sex plasticity Subdioecy 

Notes

Acknowledgements

The authors thank S. Khoury for photographs of P. tremula flowers, K. Groppe and M. Will for technical assistance with the laboratory work, B. Pakull for helpful discussions, and the Experimental Farm of University of Tuscia for hosting the experiments. We gratefully thank R. Stettler for his meaningful support and discussion during the whole study and the anonymous reviewers for the detailed and constructive comments. The maintenance of the field trials was managed by F. Ferri and funded by the University of Tuscia (AZAGR 2017—Promotion of Poplar germplasm collections. CF_40507).

Supplementary material

497_2019_378_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1086 kb)
497_2019_378_MOESM2_ESM.xls (68 kb)
Supplementary material 2 (XLS 68 kb)
497_2019_378_MOESM3_ESM.xlsx (21 kb)
Supplementary material 3 (XLSX 20 kb)

References

  1. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with image. J Biophotonics Int 11:36–42Google Scholar
  2. Akagi T, Henry IM, Tao R, Comai L (2014a) A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science 346:646.  https://doi.org/10.1126/science.1257225 CrossRefPubMedGoogle Scholar
  3. Akagi T, Kajita K, Kibe T et al (2014b) Development of molecular markers associated with sexuality in Diospyros lotus L. and their application in D. kaki thunb. J Jpn Soc Hortic Sci 83:214–221.  https://doi.org/10.2503/jjshs1.CH-109 CrossRefGoogle Scholar
  4. Akagi T, Pilkington SM, Varkonyi-Gasic E et al (2019) Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat Plants 5:801–809.  https://doi.org/10.1038/s41477-019-0489-6 CrossRefPubMedGoogle Scholar
  5. Aryal R, Ming R (2014) Sex determination in flowering plants: papaya as a model system. Plant Sci 217:56–62.  https://doi.org/10.1016/j.plantsci.2013.10.018 CrossRefPubMedGoogle Scholar
  6. Ashman T-L, Kwok A, Husband BC (2013) Revisiting the Dioecy-Polyploidy association: alternate pathways and research opportunities. Cytogenet Genome Res 140:241–255.  https://doi.org/10.1159/000353306 CrossRefPubMedGoogle Scholar
  7. Benetka V, Pospísková M, Vrátný F, Tkaczyková M (2008) Inbreeding depression in the full-sib offspring of Populus nigra L. Silvae Genet 57:202–210.  https://doi.org/10.1515/sg-2008-0031 CrossRefGoogle Scholar
  8. Böhlenius H, Huang T, Charbonnel-Campaa L et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043.  https://doi.org/10.1126/science.1126038 CrossRefPubMedGoogle Scholar
  9. Campo E (1963) Morfogenesi del fiore ed embriologia di un Populus deltoides bisessuale. G Bot Ital 70:212–219.  https://doi.org/10.1080/11263506309430203 CrossRefGoogle Scholar
  10. Charlesworth D (2012) Plant sex chromosome evolution. J Exp Bot 64:405–420.  https://doi.org/10.1093/jxb/ers322 CrossRefPubMedGoogle Scholar
  11. Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997.  https://doi.org/10.1086/283342 CrossRefGoogle Scholar
  12. Core Team R (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  13. Cossard GG, Pannell JR (2019) A functional decomposition of sex inconstancy in the dioecious, colonizing plant Mercurialis annua. Am J Bot 106:722–732.  https://doi.org/10.1002/ajb2.1277 CrossRefPubMedGoogle Scholar
  14. Crossman A, Charlesworth D (2013) Breakdown of dioecy: models where males acquire cosexual functions. Evolution 68:426–440.  https://doi.org/10.1111/evo.12283 CrossRefPubMedGoogle Scholar
  15. Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. Plant Cell 5:1241–1251.  https://doi.org/10.1105/tpc.5.10.1241 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dorken ME, Barrett SCH (2004) Sex determination and the evolution of dioecy from monoecy in Sagittaria latifolia (Alismataceae). Proc R Soc Lond B Biol Sci 271:213–219.  https://doi.org/10.1098/rspb.2003.2580 CrossRefGoogle Scholar
  17. Ehlers BK, Bataillon T (2007) ‘Inconstant males’ and the maintenance of labile sex expression in subdioecious plants. New Phytol 174:194–211.  https://doi.org/10.1111/j.1469-8137.2007.01975.x CrossRefPubMedGoogle Scholar
  18. Einspahr DW, Joranson PN (1960) Late flowering in aspen and its relation to naturally occurring hybrids. Forest Sci 6:221–224.  https://doi.org/10.1093/forestscience/6.3.221 CrossRefGoogle Scholar
  19. Farmer RE Jr (1964) Sex ratio and sex-related characteristics in eastern cottonwood. Silvae Genet 13:116–118Google Scholar
  20. Field DL, Pickup M, Barrett SCH (2012) The influence of pollination intensity on fertilization success, progeny sex ratio, and fitness in a wind-pollinated, dioecious plant. Int J Plant Sci 173:184–191.  https://doi.org/10.1086/663164 CrossRefGoogle Scholar
  21. Fladung M, Schildbach M, Hoenicka H et al (2019) Selfing of a single monoecious Populus tremula tree produces viable males, females and “supermales”. Trees 33:803–816.  https://doi.org/10.1007/s00468-019-01817-6 CrossRefGoogle Scholar
  22. Gaudet M, Jorge V, Paolucci I et al (2008) Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Genet Genomes 4:25–36.  https://doi.org/10.1007/s11295-007-0085-1 CrossRefGoogle Scholar
  23. Geraldes A, Hefer CA, Capron A et al (2015) Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol Ecol 24:3243–3256.  https://doi.org/10.1111/mec.13126 CrossRefPubMedGoogle Scholar
  24. Gramuglio G (1962) Osservazioni sul comportamento sessuale del Populus tremula L. in Italia. G Bot Ital 69:78–90.  https://doi.org/10.1080/11263506209430363 CrossRefGoogle Scholar
  25. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedPubMedCentralGoogle Scholar
  26. Harkess A, Zhou J, Xu C et al (2017) The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun 8:1279.  https://doi.org/10.1038/s41467-017-01064-8 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hartwig T, Chuck GS, Fujioka S et al (2011) Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci 108:19814–19819.  https://doi.org/10.1073/pnas.1108359108 CrossRefPubMedGoogle Scholar
  28. Hsu C-Y, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861.  https://doi.org/10.1105/tpc.106.041038 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hsu C-Y, Adams JP, Kim H et al (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci 108:10756–10761.  https://doi.org/10.1073/pnas.1104713108 CrossRefPubMedGoogle Scholar
  30. Kaul RB, Kaul MN (1984) Sex ratios of Populus deltoides and Salix amygdaloides (Salicaeae) in Nebraska. Southwest Nat 29:265–269.  https://doi.org/10.2307/3671357 CrossRefGoogle Scholar
  31. Kersten B, Pakull B, Groppe K et al (2014) The sex-linked region in Populus tremuloides Turesson 141 corresponds to a pericentromeric region of about two million base pairs on P. trichocarpa chromosome 19. Plant Biol 16:411–418.  https://doi.org/10.1111/plb.12048 CrossRefPubMedGoogle Scholar
  32. Kumar A, Jaiswal VS (1984) Sex reversal and fruit formation on male plants of Carica Papaya L by ethrel and chlorflurenol. Proc Plant Sci 93:635–641.  https://doi.org/10.1007/BF03053061 CrossRefGoogle Scholar
  33. Lande R, Schemske DW (1985) The evolution of self-fertilization and inbreeding depression in plants I. Genetic models. Evolution 39:24–40.  https://doi.org/10.1111/j.1558-5646.1985.tb04077.x CrossRefPubMedGoogle Scholar
  34. Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.  https://doi.org/10.1016/0888-7543(87)90010-3 CrossRefPubMedGoogle Scholar
  35. Lester DT (1963) Variation in sex expression in Populus tremuloides Michx. Silvae Genet 12:141–151Google Scholar
  36. Lexer C, Fay MF, Joseph JA et al (2005) Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression. Mol Ecol 14:1045–1057.  https://doi.org/10.1111/j.1365-294X.2005.02469.x CrossRefPubMedGoogle Scholar
  37. Maini JS, Coupland RT (1964) Anomalous floral organization in Populus tremuloides. Can J Bot 42:835–839.  https://doi.org/10.1139/b64-076 CrossRefGoogle Scholar
  38. May S (1959) Una manifestazione di bisessualità nel pioppo nero americano. Cellul e Carta 10:6–8Google Scholar
  39. McKown AD, Klápště J, Guy RD et al (2017) Sexual homomorphism in dioecious trees: extensive tests fail to detect sexual dimorphism in Populus. Sci Rep 7:1831.  https://doi.org/10.1038/s41598-017-01893-z CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514.  https://doi.org/10.1146/annurev-arplant-042110-103914 CrossRefPubMedGoogle Scholar
  41. Mohamed R, Wang CT, Ma C et al (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62:674–688.  https://doi.org/10.1111/j.1365-313X.2010.04185.x CrossRefPubMedGoogle Scholar
  42. Nagamitsu T, Futamura N (2014) Sex expression and inbreeding depression in progeny derived from an extraordinary hermaphrodite of Salix subfragilis. Bot Stud 55:3.  https://doi.org/10.1186/1999-3110-55-3 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Novotná K, Štochlová P (2013) Aspects of sexual reproduction in rare monoecious Populus nigra var. nigra trees. Silvae Genet 62:117–123.  https://doi.org/10.1515/sg-2013-0015 CrossRefGoogle Scholar
  44. Pakull B, Groppe K, Meyer M et al (2009) Genetic linkage mapping in aspen (Populus tremula L. and Populus tremuloides Michx.). Tree Genet Genomes 5:505–515.  https://doi.org/10.1007/s11295-009-0204-2 CrossRefGoogle Scholar
  45. Pakull B, Groppe K, Mecucci F et al (2011) Genetic mapping of linkage group XIX and identification of sex-linked SSR markers in a Populus tremula × Populus tremuloides cross. Can J Forest Res 41:245–253.  https://doi.org/10.1139/X10-206 CrossRefGoogle Scholar
  46. Pakull B, Kersten B, Lüneburg J, Fladung M (2015) A simple PCR-based marker to determine sex in aspen. Plant Biol 17:256–261.  https://doi.org/10.1111/plb.12217 CrossRefPubMedGoogle Scholar
  47. Pannell JR (2017) Plant sex determination. Curr Biol 27:R191–R197.  https://doi.org/10.1016/j.cub.2017.01.052 CrossRefPubMedGoogle Scholar
  48. Pannell JR, Obbard DJ, Buggs RJA (2004) Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol J Lin Soc 82:547–560.  https://doi.org/10.1111/j.1095-8312.2004.00340.x CrossRefGoogle Scholar
  49. Paolucci I, Gaudet M, Jorge V et al (2010) Genetic linkage maps of Populus alba L. and comparative mapping analysis of sex determination across Populus species. Tree Genet Genomes 6:863–875.  https://doi.org/10.1007/s11295-010-0297-7 CrossRefGoogle Scholar
  50. Pauley SS, Mennel GF (1957) Sex ratio and hermaphroditism in a natural population of quaking aspen. Minn For Notes (55)Google Scholar
  51. Perrier X, Jacquemoud-Collet JP (2006) DARwin software: dissimilarity analysis and representation for windows. http://darwin.cirad.fr/darwin
  52. Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers, Enfield, pp 43–76Google Scholar
  53. Pucholt P, Hallingbäck HR, Berlin S (2017) Allelic incompatibility can explain female biased sex ratios in dioecious plants. BMC Genom 18(1):251.  https://doi.org/10.1186/s12864-017-3634-5 CrossRefGoogle Scholar
  54. Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596.  https://doi.org/10.3732/ajb.1400196 CrossRefPubMedGoogle Scholar
  55. Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654PubMedPubMedCentralGoogle Scholar
  56. Robinson KM, Delhomme N, Mähler N et al (2014) Populus tremula (European aspen) shows no evidence of sexual dimorphism. BMC Plant Biol 14:276.  https://doi.org/10.1186/s12870-014-0276-5 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rottenberg A (2000) Fertility of exceptional bisexual individuals in four dioecious plant species. Sex Plant Reprod 12:219–221.  https://doi.org/10.1007/s004970050003 CrossRefGoogle Scholar
  58. Russell JRW, Pannell JR (2015) Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives. Heredity 114:262–271.  https://doi.org/10.1038/hdy.2014.95 CrossRefPubMedGoogle Scholar
  59. Sabatti M, Beritognolo I, Brunner AM et al (2010) Variation in sex expression of Populus, and comparative mapping analysis of sex determination across poplar species and hybrids. IUFRO International Poplar Symposium V, Orvieto (TR), Italy, Abstract book, p 88Google Scholar
  60. Santamour FS (1956) Hermaphroditism in Populus. In: Proceedings of 3rd north-eastern forest tree improvement conference, Ithaca, NY, USA, pp 28–30Google Scholar
  61. Slavov GT, Zhelev P (2010) Salient biological features, systematics, and genetic variation of Populus. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and genomics of Populus. Springer, New York, pp 15–38CrossRefGoogle Scholar
  62. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Co., New YorkGoogle Scholar
  63. Song Y, Ma K, Bo W et al (2012) Sex-specific DNA methylation and gene expression in andromonoecious poplar. Plant Cell Rep 31:1393–1405.  https://doi.org/10.1007/s00299-012-1255-7 CrossRefPubMedGoogle Scholar
  64. Stehlik I, Barrett SCH (2006) Pollination intensity influences sex ratios in dioecious Rumex nivalis, a wind-pollinated plant. Evolution 60:1207–1214.  https://doi.org/10.1111/j.0014-3820.2006.tb01199.x CrossRefPubMedGoogle Scholar
  65. Stettler RF (1971) Variation in sex expression of black cottonwood and related hybrids. Silvae Genet 20:42–46Google Scholar
  66. Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35.  https://doi.org/10.1023/A:1022308414864 CrossRefPubMedGoogle Scholar
  67. Tuskan GA, Gunter LE, Yang ZK et al (2004) Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can J For Res 34:85–93.  https://doi.org/10.1139/x03-283 CrossRefGoogle Scholar
  68. Tuskan GA, DiFazio S, Faivre-Rampant P et al (2012) The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree Genet Genomes 8:559–571.  https://doi.org/10.1007/s11295-012-0495-6 CrossRefGoogle Scholar
  69. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78.  https://doi.org/10.1093/jhered/93.1.77 CrossRefPubMedGoogle Scholar
  70. Yin T, DiFazio SP, Gunter LE et al (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18:422–430.  https://doi.org/10.1101/gr.7076308 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yonemori K, Sugiura A, Tanaka K, Kameda K (1993) Floral ontogeny and sex determination in monoecious-type persimmons. J Am Soc Hortic Sci 118:293–297.  https://doi.org/10.21273/JASHS.118.2.293 CrossRefGoogle Scholar
  72. Zhang J, Boualem A, Bendahmane A, Ming R (2014) Genomics of sex determination. Genome Stud Mol Genet 18:110–116.  https://doi.org/10.1016/j.pbi.2014.02.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department for Innovation in Biological, Agro-food and Forest systems (DIBAF)University of TusciaViterboItaly
  2. 2.Institute of Research on Terrestrial Ecosystems (IRET)National Research Council (CNR)PoranoItaly
  3. 3.Thünen-Institute of Forest GeneticsGrosshansdorfGermany

Personalised recommendations