Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells
Key message
A protocol for the isolation of egg apparatus cells from the basal angiosperm Amborella trichopoda to generate RNA-seq data for evolutionary studies of fertilization-associated genes.
Abstract
Sexual reproduction is particularly complex in flowering plants (angiosperms). Studies in eudicot and monocot model species have significantly contributed to our knowledge on cell fate specification of gametophytic cells and on the numerous cellular communication events necessary to deliver the two sperm cells into the embryo sac and to accomplish double fertilization. However, for a deeper understanding of the evolution of these processes, morphological, genomic and gene expression studies in extant basal angiosperms are inevitable. The basal angiosperm Amborella trichopoda is of special importance for evolutionary studies, as it is likely sister to all other living angiosperms. Here, we report about a method to isolate Amborella egg apparatus cells and on genome-wide gene expression profiles in these cells. Our transcriptomics data revealed Amborella-specific genes and genes conserved in eudicots and monocots. Gene products include secreted proteins, such as small cysteine-rich proteins previously reported to act as extracellular signaling molecules with important roles during double fertilization. The detection of transcripts encoding EGG CELL 1 (EC1) and related prolamin-like family proteins in Amborella egg cells demonstrates the potential of the generated data set to study conserved molecular mechanisms and the evolution of fertilization-related genes and their encoded proteins.
Keywords
Egg cell Synergid cell Microdissection EC1 RALF RNA-seq AmborellaNotes
Acknowledgements
We are grateful to Maximilian Weigend, Cornelia Löhne and Bernhard Reinken (Botanical Garden of the University of Bonn, Germany) for providing Amborella plant material. We thank Maria Lindemeier for her support in single-cell collection. Illumina deep sequencing was carried out at a genomics core facility: Center of Excellence for Fluorescent Bioanalytics (KFB, University of Regensburg, Germany). This work was supported by the ERA-CAPS Grant EVOREPRO (DR 334/12-1) to SS and TD, funded by the Deutsche Forschungsgemeinschaft (DFG).
Supplementary material
References
- Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089. https://doi.org/10.1126/science.1241089
- Amien S, Kliwer I, Márton ML, Debener T, Geiger D, Becker D, Dresselhaus T (2010) Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 8:e1000388CrossRefGoogle Scholar
- Anderson SN, Johnson CS, Jones DS, Conrad LJ, Gou X, Russell SD, Sundaresan V (2013) Transcriptomes of isolated Oryza sativa gametes characterized by deep sequencing: evidence for distinct sex-dependent chromatin and epigenetic states before fertilization. Plant J 76:729–741. https://doi.org/10.1111/tpj.12336 CrossRefGoogle Scholar
- Bell CD, Soltis DE, Soltis PS (2005) The age of the angiosperms: a molecular timescale without a clock. Evolution 59:1245–1258. https://doi.org/10.1111/j.0014-3820.2005.tb01775.x CrossRefGoogle Scholar
- Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525. https://doi.org/10.1038/nbt.3519 CrossRefGoogle Scholar
- Campbell L, Turner SR (2017) A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups. Front Plant Sci 8:37. https://doi.org/10.3389/fpls.2017.00037 CrossRefGoogle Scholar
- Cao Y, Russell SD (1997) Mechanical isolation and ultrastructural characterization of viable egg cells in Plumbago zeylanica. Sex Plant Reprod 10:368–373. https://doi.org/10.1007/s004970050111 CrossRefGoogle Scholar
- Chen SH, Yang YH, Liao JP, Kuang AX, Tian HQ (2008) Isolation of egg cells and zygotes of Torenia fournieri L. and determination of their surface charge. Zygote 16:179–186. https://doi.org/10.1017/S0967199408004693 CrossRefGoogle Scholar
- Chen J, Strieder N, Krohn NG, Cyprys P, Sprunck S, Engelmann JC, Dresselhaus T (2017) Zygotic genome activation occurs shortly after fertilization in maize. Plant Cell 29:2106–2125CrossRefGoogle Scholar
- Conesa A et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:1–13. https://doi.org/10.1186/s13059-016-0881-8 CrossRefGoogle Scholar
- Doyle JA (2012) Molecular and fossil evidence on the origin of angiosperms. In: Jeanloz R (ed) Annual review of earth and planetary sciences, vol 40. Department of Evolution and Ecology, University of California, Davis, pp 301–326Google Scholar
- Dresselhaus T, Sprunck S, Wessel GM (2016) Fertilization mechanisms in flowering plants. Curr Biol 26:R125–R139. https://doi.org/10.1016/j.cub.2015.12.032 CrossRefGoogle Scholar
- Edstam MM, Viitanen L, Salminen TA, Edqvist J (2011) Evolutionary history of the non-specific lipid transfer proteins. Mol Plant 4:947–964. https://doi.org/10.1093/mp/ssr019 CrossRefGoogle Scholar
- Englhart M, Šoljić L, Sprunck S (2017) Manual isolation of living cells from the Arabidopsis thaliana female gametophyte by micromanipulation. In: Schmidt A (ed) Plant germline development: methods and protocols. Springer, New York, pp 221–234. https://doi.org/10.1007/978-1-4939-7286-9_18 CrossRefGoogle Scholar
- Friedman WE (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441:337–340CrossRefGoogle Scholar
- Friedman WE (2008) Hydatellaceae are water lilies with gymnospermous tendencies. Nature 453:94–97CrossRefGoogle Scholar
- Friedman WE, Ryerson KC (2009) Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants. Am J Bot 96:129–143. https://doi.org/10.3732/ajb.0800311 CrossRefGoogle Scholar
- Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu MC, Luo X, Ruan H, García-Valencia LE, Zhong S, Hou S, Huang Q, Lai L, Moura DS, Gu H, Dong J, Wu HM, Dresselhaus T, Xiao J, Cheung AY, Qu LJ (2017) Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:1596–1600. https://doi.org/10.1126/science.aao3642 CrossRefGoogle Scholar
- Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–411CrossRefGoogle Scholar
- He E-M, Wang Y-Y, Liu H-H, Zhu X-Y, Tian H (2012) Egg cell isolation in Datura stramonium (Solanaceae). Ann Bot Fenn 49:7–12. https://doi.org/10.5735/085.049.0102 CrossRefGoogle Scholar
- Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413CrossRefGoogle Scholar
- Higashiyama T, Yang W-c (2017) Gametophytic pollen tube guidance: attractant peptides, gametic controls, and receptors. Plant Physiol 173:112–121CrossRefGoogle Scholar
- Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roue C (1994) Regeneration of fertile barley plants from mechanically isolated protoplasts of the fertilized egg cell. Plant Cell 6:531–543. https://doi.org/10.1105/tpc.6.4.531 CrossRefGoogle Scholar
- Hoshino Y, Murata N, Shinoda K (2006) Isolation of individual egg cells and zygotes in Alstroemeria followed by manual selection with a microcapillary-connected micropump. Ann Bot 97:1139–1144. https://doi.org/10.1093/aob/mcl072 CrossRefGoogle Scholar
- Hu S-Y, L-g Li, Zhu C (1985) Isolation of viable embryo sacs and their protoplasts of Nicotiana tabacum. Acta Bot Sin 27:343–347Google Scholar
- Huang B-Q, Russell SD (1992) Female germ unit: organization, isolation, and function. Int Rev Cytol 140:233–293CrossRefGoogle Scholar
- Huang B-Q, Pierson ES, Russell SD, Tiezzi A, Cresti M (1992) Video microscopic observations of living, isolated embryo sacs of Nicotiana and their component cells. Sex Plant Rep 5:156–162. https://doi.org/10.1007/bf00194876 Google Scholar
- Jones-Rhoades MW, Borevitz JO, Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 3:1848–1861CrossRefGoogle Scholar
- Katoh N, Lorz H, Kranz E (1997) Isolation of viable egg cells of rape (Brassica napus L.). Zygote 5:31–33CrossRefGoogle Scholar
- Kersey PJ et al (2016) Ensembl genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–D580. https://doi.org/10.1093/nar/gkv1209 CrossRefGoogle Scholar
- Kovács M, Barnabás B, Kranz E (1994) The isolation of viable egg cells of wheat (Triticum aestivum L.). Sex Plant Reprod 7:311–312. https://doi.org/10.1007/bf00227715 CrossRefGoogle Scholar
- Kranz E, Bautor J, Lörz H (1991) In vitro fertilization of single, isolated gametes of maize mediated by electrofusion. Sex Plant Reprod 4:12–16. https://doi.org/10.1007/bf00194565 Google Scholar
- Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
- Leljak-Levanić D, Juranić M, Sprunck S (2013) De novo zygotic transcription in wheat (Triticum aestivum L.) includes genes encoding small putative secreted peptides and a protein involved in proteasomal degradation. Plant Reprod 26:267–285. https://doi.org/10.1007/s00497-013-0229-4 CrossRefGoogle Scholar
- Lin M-Z, Chen L, Zhu X-Y, Tian H-Q, Teixeira da Silva JA (2012) Isolation of eggs and synergids in Ceiba speciosa. Ann Bot Fenn 49:229–233. https://doi.org/10.5735/085.049.0402 CrossRefGoogle Scholar
- Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New YorkCrossRefGoogle Scholar
- Márton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573. https://doi.org/10.1126/science.1104954 CrossRefGoogle Scholar
- Márton ML, Fastner A, Uebler S, Dresselhaus T (2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol 22:1194–1198CrossRefGoogle Scholar
- Mól R (1986) Isolation of protoplasts from female gametophytes of Torenia fournieri. Plant Cell Rep 5:202–206. https://doi.org/10.1007/bf00269119 CrossRefGoogle Scholar
- Ohnishi T, Takanashi H, Mogi M, Takahashi H, Kikuchi S, Yano K, Okamoto T, Fujita M, Kurata N, Tsutsumi N (2011) Distinct gene expression profiles in egg and synergid cells of rice as revealed by cell type-specific microarrays. Plant Physiol 155:881–891. https://doi.org/10.1104/pp.110.167502 CrossRefGoogle Scholar
- Ohshika K, Ikeda H (1994) Isolation and preservation of the living embryo sac of Crinum asiaticum L. var. japonicum baker. J Plant Res 107:17–21. https://doi.org/10.1007/bf02344525 CrossRefGoogle Scholar
- Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361. https://doi.org/10.1038/nature07882 CrossRefGoogle Scholar
- Proost S, Mutwil M (2018) CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses. Nucleic Acids Res 46:W133–W140. https://doi.org/10.1093/nar/gky336 CrossRefGoogle Scholar
- Rademacher S, Sprunck S (2013) Downregulation of egg cell-secreted EC1 is accompanied with delayed gamete fusion and polytubey. Plant Signal Behav 8:e27377CrossRefGoogle Scholar
- Resentini F et al (2017) SUPPRESSOR OF FRIGIDA (SUF4) supports gamete fusion via regulating Arabidopsis EC1 gene expression. Plant Physiol 173:155–166. https://doi.org/10.1104/pp.16.01024 CrossRefGoogle Scholar
- Rudall PJ, Remizowa MV, Beer AS, Bradshaw E, Stevenson DW, Macfarlane TD, Tuckett RE et al (2008) Comparative ovule and megagametophyte development in Hydatellaceae and water lilies reveal a mosaic of features among the earliest angiosperms. Ann Bot 101:941–956CrossRefGoogle Scholar
- Scutt CP (2018) The origin of angiosperms. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology. Springer, Berlin. https://doi.org/10.1007/978-3-319-33038-9_60-1 Google Scholar
- Sprunck S, Groß-Hardt R (2011) Nuclear behavior, cell polarity and cell specification in the female gametophyte. Sex Plant Reprod 24:123–136CrossRefGoogle Scholar
- Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T (2005) The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). Plant J 41:660–672. https://doi.org/10.1111/j.1365-313X.2005.02332.x CrossRefGoogle Scholar
- Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T (2012) Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–1097CrossRefGoogle Scholar
- Sprunck S, Hackenberg T, Englhart M, Vogler F (2014) Same same but different: sperm-activating EC1 and ECA1 gametogenesis-related family proteins. Biochem Soc Trans 42:401–407. https://doi.org/10.1042/BST20140039 CrossRefGoogle Scholar
- Steffen JG, Kang IH, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51:281–292. https://doi.org/10.1111/j.1365-313X.2007.03137.x CrossRefGoogle Scholar
- Strasburger E (1879) Die Angiospermen und die Gymnospermen. Fischer, Jena, p 1879CrossRefGoogle Scholar
- Takeuchi H, Higashiyama T (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10:e1001449. https://doi.org/10.1371/journal.pbio.1001449 CrossRefGoogle Scholar
- Tekleyohans DG, Nakel T, Groß-Hardt R (2017) Patterning the female gametophyte of flowering plants. Plant Physiol 173:122–129. https://doi.org/10.1104/pp.16.01472 CrossRefGoogle Scholar
- Tian HQ, Russell SD (1997) Micromanipulation of male and female gametes of Nicotiana tabacum: II. Preliminary attempts for in vitro fertilization and egg cell culture. Plant Cell Rep 16:657–661. https://doi.org/10.1007/bf01275510 CrossRefGoogle Scholar
- Tobe H, Kimoto Y, Prakash N (2007) Development and structure of the female gametophyte in Austrobaileya scandens (Austrobaileyaceae). J Plant Res 120:431–436CrossRefGoogle Scholar
- Uchiumi T, Komatsu S, Koshiba T, Okamoto T (2006) Isolation of gametes and central cells from Oryza sativa L. Sex Plant Rep 19:37–45. https://doi.org/10.1007/s00497-006-0020-x CrossRefGoogle Scholar
- van der Maas HM, Zaal MACM, de Jong ER, Krens FA, Van Went JL (1993) Isolation of viable egg cells of perennial ryegrass (Lolium perenne L.). Protoplasma 173:86–89. https://doi.org/10.1007/bf01378865 CrossRefGoogle Scholar
- Van Went JL, Kwee H-S (1990) Enzymatic isolation of living embryo sacs of Petunia. Sex Plant Rep 3:257–262. https://doi.org/10.1007/bf00202883 CrossRefGoogle Scholar
- Williams JH, Friedman WE (2004) The four-celled female gametophyte of Illicium (Illiciaceae; Austrobaileyales): implications for understanding the origin and early evolution of monocots, eumagnoliids, and eudicots. Am J Bot 91:332–351CrossRefGoogle Scholar
- Willis K, McElwain J (2013) The evolution of plants, 2nd edn. Oxford University Press, Oxford, ISBN: 9780199292233Google Scholar
- Wuest SE et al (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20:506–512. https://doi.org/10.1016/j.cub.2010.01.051 CrossRefGoogle Scholar
- Yang SJ, Mei Wei D, Tian H (2015) Isolation of sperm cells, egg cells, synergids and central cells from Solanum verbascifolium L. J Plant Biochem Biot 24:400–407. https://doi.org/10.1007/s13562-014-0290-6 CrossRefGoogle Scholar
- Zhang D (2009) Homology between DUF784, DUF1278 domains and the plant prolamin superfamily typifies evolutionary changes of disulfide bonding patterns. Cell Cycle 8:3428–3430. https://doi.org/10.4161/cc.8.20.9674 CrossRefGoogle Scholar
- Zhou L-Z, Juranic M, Dresselhaus T (2017) Germline development and fertilization mechanisms in maize. Mol Plant 10:389–401CrossRefGoogle Scholar