Plant Reproduction

, Volume 30, Issue 1, pp 19–39 | Cite as

Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones

  • Stéfanie Menezes de Moura
  • Sinara Artico
  • Cássio Lima
  • Sarah Muniz Nardeli
  • Ana Berbel
  • Osmundo Brilhante Oliveira-Neto
  • Maria Fátima Grossi-de-Sá
  • Cristina Ferrándiz
  • Francisco Madueño
  • Márcio Alves-Ferreira
Original Article

Key message

Expression analysis of the AG -subfamily members from G. hirsutum during flower and fruit development.


Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several studies have reported the identification and expression of the transcription factor family MADS-box members in cotton ovules and fibers; however, their roles are still elusive during the reproductive development in cotton. In this study, we evaluated the expression profiles of five MADS-box genes (GhMADS3, GhMADS4, GhMADS5, GhMADS6 and GhMADS7) belonging to the AGAMOUS-subfamily in Gossypium hirsutum. Phylogenetic and protein sequence analyses were performed using diploid (G. arboreum, G. raimondii) and tetraploid (G. barbadense, G. hirsutum) cotton genomes, as well as the AG-subfamily members from Arabidopsis thaliana, Petunia hybrida and Antirrhinum majus. qPCR analysis showed that the AG-subfamily genes had high expression during flower and fruit development in G. hirsutum. In situ hybridization analysis also substantiates the involvement of AG-subfamily members on reproductive tissues of G. hirsutum, including ovule and ovary. The effect of plant hormones on AG-subfamily genes expression was verified in cotton fruits treated with gibberellin, auxin and brassinosteroid. All the genes were significantly regulated in response to auxin, whereas only GhMADS3, GhMADS4 and GhMADS7 genes were also regulated by brassinosteroid treatment. In addition, we have investigated the GhMADS3 and GhMADS4 overexpression effects in Arabidopsis plants. Interestingly, the transgenic plants from both cotton AG-like genes in Arabidopsis significantly altered the fruit size compared to the control plants. This alteration suggests that cotton AG-like genes might act regulating fruit formation. Our results demonstrate that members of the AG-subfamily in G. hirsutum present a conserved expression profile during flower development, but also demonstrate their expression during fruit development and in response to phytohormones.


Gossypium hirsutum MADS-box genes Plant hormones Gene expression Reference genes Reproductive development 



We thank Durvalina Felix and Alexandre Garcez by assist in samples preparation. We are grateful Fábia Guimarães-Dias by valuable suggestions on the Manuscript. This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and European Community (Evolutionary Conservation of Regulatory Network Controlling Flower Development, EVOCODE).

Supplementary material

497_2017_297_MOESM1_ESM.jpg (1.8 mb)
Supplementary material 1 (JPEG 1886 kb)
497_2017_297_MOESM2_ESM.xls (62 kb)
Supplementary material 2 (XLS 61 kb)
497_2017_297_MOESM3_ESM.xls (24 kb)
Supplementary material 3 (XLS 23 kb)


  1. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100:4649–4654. doi: 10.1073/pnas.0630618100 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez-Buylla ER, Pelaz S, Liljegren SJ et al (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97:5328–5333. doi: 10.1073/pnas.97.10.5328 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 CrossRefPubMedGoogle Scholar
  5. Angenent GC, Franken J, Busscher M et al (1993) Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J 4:101–112CrossRefPubMedGoogle Scholar
  6. Angenent GC, Franken J, Busscher M et al (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582. doi: 10.1105/tpc.7.10.1569 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Artico S, Nardeli SM, Brilhante O et al (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49. doi: 10.1186/1471-2229-10-49 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489. doi: 10.1016/S1055-7903(03)00207-0 CrossRefPubMedGoogle Scholar
  9. Bézier A, Lambert B, Baillieul F (2002) Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120. doi: 10.1023/A:1015061108045 CrossRefGoogle Scholar
  10. Bin Zhang H, Li Y, Wang B, Chee PW (2008) Recent advances in cotton genomics. Int J Plant Genomics. doi: 10.1155/2008/742304 Google Scholar
  11. Causier B, Castillo R, Zhou J et al (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr Biol 15:1508–1512. doi: 10.1016/j.cub.2005.07.063 CrossRefPubMedGoogle Scholar
  12. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x CrossRefPubMedGoogle Scholar
  13. Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC, van Tunen AJ (1995) The petunia MADS Box gene FBP11 determines ovule ldentity. Plant Cell 7:1859–1868. doi: 10.1105/tpc.7.11.1859 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Colombo L, Franken J, Van der Krol AR et al (1997) Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715. doi: 10.1105/tpc.9.5.703 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Colombo M, Brambilla V, Marcheselli R et al (2010) A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Dev Biol 337:294–302. doi: 10.1016/j.ydbio.2009.10.043 CrossRefPubMedGoogle Scholar
  16. Davies B, Motte P, Keck E et al (1999) PLENA and FARINELLI: Redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034. doi: 10.1093/emboj/18.14.4023 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dias BFO, Simões-Araújo JL, Russo CAM et al (2005) Unravelling MADS-box gene family in Eucalyptus spp.: a starting point to an understanding of their developmental role in trees. Genet Mol Biol 28:501–510. doi: 10.1590/S1415-47572005000400004 CrossRefGoogle Scholar
  18. Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379. doi: 10.1093/emboj/18.19.5370 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868CrossRefPubMedPubMedCentralGoogle Scholar
  20. Favaro R, Pinyopich A, Battaglia R et al (2003) MADS-Box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611. doi: 10.1105/tpc.015123 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ferrándiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438. doi: 10.1126/science.289.5478.436 CrossRefPubMedGoogle Scholar
  22. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37. doi: 10.1093/nar/gkr367 CrossRefGoogle Scholar
  23. Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:222–230. doi: 10.1093/nar/gkt1223 CrossRefGoogle Scholar
  24. Gialvalis S, Seagull RW (2001) Plant hormones alter fiber initiation in unfertilized, cultured ovules of Gossypium hirsutum. J Cotton Sci 5:252–258 STGoogle Scholar
  25. Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:214. doi: 10.1186/gb-2010-11-6-214 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guan X, Lee JJ, Pang M et al (2011) Activation of arabidopsis seed hair development by cotton fiber-related genes. PLoS ONE. doi: 10.1371/journal.pone.0021301 Google Scholar
  27. Guénin S, Mauriat M, Pelloux J et al (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493. doi: 10.1093/jxb/ern305 CrossRefPubMedGoogle Scholar
  28. Guo Y, Zhu Q, Zheng S, Li M (2007) Cloning of a MADS Box Gene (GhMADS3) from cotton and analysis of Its homeotic role in transgenic tobacco. J Genet Genom 34:527–535. doi: 10.1016/S1673-8527(07)60058-7 CrossRefGoogle Scholar
  29. Heijmans K, Ament K, Rijpkema AS et al (2012) Redefining C and D in the petunia ABC. Plant Cell 24:2305–2317. doi: 10.1105/tpc.112.097030 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hellemans J, Mortier G, De Paepe A et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19. doi: 10.1186/gb-2007-8-2-r19 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919CrossRefPubMedPubMedCentralGoogle Scholar
  32. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529. doi: 10.1038/35054083 CrossRefPubMedGoogle Scholar
  33. Hovav R, Udall JA, Hovav E et al (2008) A majority of cotton genes are expressed in single-celled fiber. Planta 227:319–329. doi: 10.1007/s00425-007-0619-7 CrossRefPubMedGoogle Scholar
  34. Jin X, Fu J, Dai S et al (2013) Reference gene selection for qPCR analysis in cineraria developing flowers. Sci Hortic (Amsterdam) 153:64–70. doi: 10.1016/j.scienta.2013.01.023 CrossRefGoogle Scholar
  35. Kapoor M, Tsuda S, Tanaka Y et al (2002) Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. Plant J 32:115–127. doi: 10.1046/j.1365-313X.2002.01402.x CrossRefPubMedGoogle Scholar
  36. Kater MM, Colombo L, Franken J et al (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10:171–182. doi: 10.1105/tpc.10.2.171 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim HJ, Hinchliffe DJ, Triplett BA et al (2015) Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS ONE 10:1–21. doi: 10.1371/journal.pone.0125046 Google Scholar
  38. Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS Subfamily of MADS Box genes in Angiosperms. Genetics 166:1011–1023. doi: 10.1534/genetics.166.2.1011 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:msw054. doi:  10.1093/molbev/msw054
  40. Langer K, Ache P, Geiger D et al (2002) Poplar potassium transporters capable of controlling K + homeostasis and K + −dependent xylogenesis. Plant J 32:997–1009. doi: 10.1046/j.1365-313X.2002.01487.x CrossRefPubMedGoogle Scholar
  41. Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401. doi: 10.1093/aob/mcm232 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li Y, Ning H, Zhang Z et al (2011) A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation. Acta Biochim Biophys Sin (Shanghai) 43:607–617. doi: 10.1093/abbs/gmr055 CrossRefGoogle Scholar
  43. Li F, Fan G, Wang K et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572CrossRefPubMedGoogle Scholar
  44. Lightfoot DJ, Malone KM, Timmis JN, Orford SJ (2008) Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells. Mol Genet Genom 279:75–85. doi: 10.1007/s00438-007-0297-y CrossRefGoogle Scholar
  45. Liljegren SJ, Ditta GS, Eshed Y et al (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770CrossRefPubMedGoogle Scholar
  46. Liu X, Zuo K, Zhang F et al (2009) Identification and expression profile of GbAGL2, a C-class gene from Gossypium barbadense. J Biosci 34:941–951. doi: 10.1007/s12038-009-0108-1 CrossRefPubMedGoogle Scholar
  47. Liu X, Zuo KJ, Xu JT et al (2010) Functional analysis of GbAGL1, a D-lineage gene from cotton (Gossypium barbadense). J Exp Bot 61:1193–1203. doi: 10.1093/jxb/erp388 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mansoor S, Paterson AH (2012) Genomes for jeans: cotton genomics for engineering superior fiber. Trends Biotechnol 30:521–527. doi: 10.1016/j.tibtech.2012.06.003 CrossRefPubMedGoogle Scholar
  49. McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79. doi: 10.3389/fpls.2013.00079 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene agamous in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131CrossRefPubMedGoogle Scholar
  51. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  52. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914. doi: 10.1093/jxb/eri285 CrossRefPubMedGoogle Scholar
  53. Oosterhuis DM, Cothren JT (2012) Flowering and fruiting in cotton, Number Eig. The Cotton Foundation Cordova, TennesseeGoogle Scholar
  54. Pabón-Mora N, Wong GK-S, Ambrose BA (2014) Evolution of fruit development genes in flowering plants. Front Plant Sci 5:1–24. doi: 10.3389/fpls.2014.00300 Google Scholar
  55. Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427CrossRefPubMedGoogle Scholar
  56. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi: 10.1093/nar/30.9.e36 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pinyopich A, Ditta GS, Savidge B et al (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88. doi: 10.1038/nature01741 CrossRefPubMedGoogle Scholar
  58. Pontius JU, Wagner L, Schuler GD (2003) UniGene: a unified view of the transcriptome. NCBI Handb 1:1–12Google Scholar
  59. Puranik S, Acajjaoui S, Conn S et al (2014) Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Plant Cell 26:3603–3615. doi: 10.1105/tpc.114.127910 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101PubMedGoogle Scholar
  61. Ritchie GL, Bednarz CW, Jost PH, Brown SM (2007) Cotton growth and development. University of Georgia Cooperative Extension Service Bulletim 1253. [A bulletim with practical information on cotton growth and development].
  62. Robertson B, Bednarz C, Burmester C et al (2007) Growth and development—first 60 days. Cotton Physiology Today. Vol 13, Issue 2. National Cotton Council of Am. Memphis, TNGoogle Scholar
  63. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers, vol 132. NJ Humana Press, Totowa, pp 365–386. doi: 10.1385/1-59259-192-2:365 Google Scholar
  64. Ruan W, Lai M (2007) Actin, a reliable marker of internal control? Clin Chim Acta 385:1–5. doi: 10.1016/j.cca.2007.07.003 CrossRefPubMedGoogle Scholar
  65. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees’. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  66. Seagull RW, Giavalis S (2004) Pre- and post anthesis application of exogenous hormones alters fiber production in G. hirsutum L. Cultivar MAXXA GTO. J Cotton Sci 111:105–111Google Scholar
  67. Sun Y, Fokar M, Asami T et al (2004) Characterization of the Brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol 54:221–232. doi: 10.1023/B:PLAN.0000028788.96381.47 CrossRefPubMedGoogle Scholar
  68. Sun Y, Veerabomma S, Abdel-Mageed HA et al (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46:1384–1391. doi: 10.1093/pcp/pci150 CrossRefPubMedGoogle Scholar
  69. Thomas C, Meyer D, Wolff M et al (2003) Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Mol Biol 52:1025–1036CrossRefPubMedGoogle Scholar
  70. Tsuchimoto S, Van Der Krol AR, Chua N (1993) Ectopic expnession of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell 5:843–853CrossRefPubMedPubMedCentralGoogle Scholar
  71. Waterhouse AM, Procter JB, Martin DMA et al (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi: 10.1093/bioinformatics/btp033 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186. doi: 10.1016/s0065-2113(02)78004-8 CrossRefGoogle Scholar
  73. Xiao YH, Li DM, Yin MH et al (2010) Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J Plant Physiol 167:829–837. doi: 10.1016/j.jplph.2010.01.003 CrossRefPubMedGoogle Scholar
  74. Yang SS, Cheung F, Lee JJ et al (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775. doi: 10.1111/j.1365-313X.2006.02829.x CrossRefPubMedCentralGoogle Scholar
  75. Yoo MJ, Wendel JF (2014) Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet. doi: 10.1371/journal.pgen.1004073 Google Scholar
  76. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064. doi: 10.1089/cmb.2005.12.1047 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Stéfanie Menezes de Moura
    • 1
  • Sinara Artico
    • 1
  • Cássio Lima
    • 1
  • Sarah Muniz Nardeli
    • 1
  • Ana Berbel
    • 4
  • Osmundo Brilhante Oliveira-Neto
    • 2
    • 3
  • Maria Fátima Grossi-de-Sá
    • 2
  • Cristina Ferrándiz
    • 4
  • Francisco Madueño
    • 4
  • Márcio Alves-Ferreira
    • 1
  1. 1.Department of GeneticsUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Laboratório de Interação Planta-Praga, Parque Estação Biológica (PqEB)Embrapa Genetic Resources and BiotechnologyBrasíliaBrazil
  3. 3.Centro Universitário UnieuroBrasíliaBrazil
  4. 4.Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas - Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations