Plant Reproduction

, Volume 29, Issue 1–2, pp 133–147 | Cite as

Bioinformatics resources for pollen

  • Luca Ambrosino
  • Hamed Bostan
  • Valentino Ruggieri
  • Maria Luisa Chiusano
Part of the following topical collections:
  1. Pollen development and stress response

Key message

Bioinformatics for Pollen.


Pollen plays a key role in crop production, and its development is the most delicate phase in reproduction. Different metabolic pathways are involved in pollen development, and changes in the level of some metabolites, as well as responses to stress, are correlated with the reduction in pollen viability, leading consequently to a decrease in the fruit production. However, studies on pollen may be hard because gamete development and fertilization are complex processes that occur during a short window of time. The rise of the so-called -omics sciences provided key strategies to promote molecular research in pollen tissues, starting from model organisms and moving to increasing number of species. An integrated multi-level approach based on investigations from genomics, transcriptomics, proteomics and metabolomics appears now feasible to clarify key molecular processes in pollen development and viability. To this aim, bioinformatics has a fundamental role for data production and analysis, contributing varied and ad hoc methodologies, endowed with different sensitivity and specificity, necessary for extracting added-value information from the large amount of molecular data achievable. Bioinformatics is also essential for data management, organization, distribution and integration in suitable resources. This is necessary to catch the biological features of the pollen tissues and to design effective approaches to identifying structural or functional properties, enabling the modeling of the major involved processes in normal or in stress conditions. In this review, we provide an overview of the available bioinformatics resources for pollen, ranging from raw data collections to complete databases or platforms, when available, which include data and/or results from -omics efforts on the male gametophyte. Perspectives in the fields will also be described.


Data sources Bioinformatics platforms Omics Data integration 



This work is supported by the Solanaceae Pollen Thermotolerance—Marie Curie Initial Training Network project (Grant Agreement No. 289220). Luca Ambrosino is supported by the Genopom Pro and HORT Projects (Ministero dell’Istruzione, dell’Università e della Ricerca, Italy).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdul-Baki AA, Stommel JR (1995) Pollen viability and fruit set of tomato genotypes under optimum and high-temperature regimes. Hortscience 30:115–117Google Scholar
  2. Alexandersson M, Cawley S, Pachter L (2003) SLAM: cross-species gene finding and alignment with a generalized pair hidden Markov model. Genome Res 13:496–502PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. doi: 10.1186/gb-2010-11-10-r106 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  5. Bandyopadhyay S, Pal SK (2007) Classification and learning using genetic algorithms: applications in bioinformatics and web intelligence. Springer Science & Business Media, BerlinGoogle Scholar
  6. Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA (2003) Transcriptional profiling of arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725. doi: 10.1104/pp.103.028241 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T (2011) Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genom 12:384. doi: 10.1186/1471-2164-12-384 CrossRefGoogle Scholar
  8. Blunsom P (2004) Hidden markov models Lecture notes, August 15, p 18–19Google Scholar
  9. Boguski MS, Lowe TM, Tolstoshev CM (1993) dbEST–database for “expressed sequence tags”. Nat Genet 4:332–333. doi: 10.1038/ng0893-332 PubMedCrossRefGoogle Scholar
  10. Bokszczanin KL, Fragkostefanakis S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315. doi: 10.3389/fpls.2013.00315 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bokszczanin K et al (2015) Identification of novel small ncRNAs in pollen of tomato. BMC Genom 16:714CrossRefGoogle Scholar
  12. Bokvaj P, Hafidh S, Honys D (2015) Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genom Data 3:106–111. doi: 10.1016/j.gdata.2014.12.002 PubMedCrossRefGoogle Scholar
  13. Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol Biol (Clifton, NJ) 1374:115–140. doi: 10.1007/978-1-4939-3167-5_6 CrossRefGoogle Scholar
  14. Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD (2011) MicroRNA activity in the Arabidopsis male germline. J Exp Bot 62:1611–1620. doi: 10.1093/jxb/erq452 PubMedCrossRefGoogle Scholar
  15. Bostan H, Chiusano ML (2015) NexGenEx-Tom: a gene expression platform to investigate the functionalities of the tomato genome. BMC Plant Biol 15:48. doi: 10.1186/s12870-014-0412-2 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brown GR et al (2015) Gene: a gene-centered information resource at NCBI. Nucleic Acids Res 43:D36–D42. doi: 10.1093/nar/gku1055 PubMedCrossRefGoogle Scholar
  17. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94PubMedCrossRefGoogle Scholar
  18. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. doi: 10.1186/1471-2105-10-421 CrossRefGoogle Scholar
  19. Caspi R et al (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 42:D459–D471. doi: 10.1093/nar/gkt1103 PubMedCrossRefGoogle Scholar
  20. Chaturvedi P, Ischebeck T, Egelhofer V, Lichtscheidl I, Weckwerth W (2013) Cell-specific analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides evidence for developmental priming. J Proteome Res 12:4892–4903. doi: 10.1021/pr400197p PubMedCrossRefGoogle Scholar
  21. Chen F, Mackey AJ, Vermunt JK, Roos DS (2007) Assessing performance of orthology detection strategies applied to eukaryotigenomes. PLoS One 2:e383. doi: 10.1371/journal.pone.0000383 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chettoor AM et al (2014) Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biol 15:414. doi: 10.1186/s13059-014-0414-2 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572. doi: 10.1146/annurev.arplant.59.032607.092921 PubMedCrossRefGoogle Scholar
  24. Childs KL et al (2007) The TIGR plant transcript assemblies database. Nucleic Acids Res 35:D846–D851. doi: 10.1093/nar/gkl785 PubMedCrossRefGoogle Scholar
  25. Chiusano ML (2015) On the multifaceted aspects of bioinformatics in the next generation era: the run that must keep the quality. Next Gener Seq Appl 2:e106Google Scholar
  26. Chiusano ML et al (2008) ISOL@: an Italian SOL Anaceae genomics resource. BMC Bioinform 9 Suppl(2):S7. doi: 10.1186/1471-2105-9-s2-s7 CrossRefGoogle Scholar
  27. Chou K-C, Cai Y-D (2002) Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 277:45765–45769PubMedCrossRefGoogle Scholar
  28. Colaco R, Moreno N, Feijo JA (2012) On the fast lane: mitochondria structure, dynamics and function in growing pollen tubes. J Microsc 247:106–118. doi: 10.1111/j.1365-2818.2012.03628.x PubMedCrossRefGoogle Scholar
  29. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201PubMedPubMedCentralCrossRefGoogle Scholar
  30. Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 2008:619832. doi: 10.1155/2008/619832 Google Scholar
  31. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297Google Scholar
  32. D’Agostino N, Aversano M, Chiusano ML (2005) ParPEST: a pipeline for EST data analysis based on parallel computing. BMC Bioinform 6 Suppl(4):S9. doi: 10.1186/1471-2105-6-s4-s9 CrossRefGoogle Scholar
  33. D’Agostino N, Aversano M, Frusciante L, Chiusano ML (2007a) TomatEST database: in silico exploitation of EST data to explore expression patterns in tomato species. Nucleic Acids Res 35:D901–D905. doi: 10.1093/nar/gkl921 PubMedCrossRefGoogle Scholar
  34. D’Agostino N, Pizzichini D, Chiusano ML, Giuliano G (2007b) An EST database from saffron stigmas. BMC Plant Biol 7:53. doi: 10.1186/1471-2229-7-53 PubMedPubMedCentralCrossRefGoogle Scholar
  35. D’Agostino N, Traini A, Frusciante L, Chiusano ML (2009) SolEST database: a “one-stop shop” approach to the study of Solanaceae transcriptomes. BMC Plant Biol 9:142. doi: 10.1186/1471-2229-9-142 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dai S, Li L, Chen T, Chong K, Xue Y, Wang T (2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6:2504–2529. doi: 10.1002/pmic.200401351 PubMedCrossRefGoogle Scholar
  37. Davidson RM et al (2011) Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome 4:191–203. doi: 10.3835/plantgenome2011.05.0015 CrossRefGoogle Scholar
  38. Di Salle P, Incerti G, Colantuono C, Chiusano ML (2016) Gene co-expression analyses: an overview from microarray collections in Arabidopsis thaliana. Briefings Bioinform. doi: 10.1093/bib/bbw002 Google Scholar
  39. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70. doi: 10.1093/nar/gkq310 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Duvick J et al (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36:D959–D965. doi: 10.1093/nar/gkm1041 PubMedCrossRefGoogle Scholar
  41. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210PubMedPubMedCentralCrossRefGoogle Scholar
  42. English AC, Patel KS, Loraine AE (2010) Prevalence of alternative splicing choices in Arabidopsis thaliana. BMC Plant Biol 10:102. doi: 10.1186/1471-2229-10-102 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fasoli M et al (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24:3489–3505. doi: 10.1105/tpc.112.100230 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Feng X, Zilberman D, Dickinson H (2013) A conversation across generations: soma-germ cell crosstalk in plants. Dev Cell 24:215–225. doi: 10.1016/j.devcel.2013.01.014 PubMedCrossRefGoogle Scholar
  45. Fernandez-Pozo N et al (2015) The Sol Genomics Network (SGN)–from genotype to phenotype to breeding. Nucleic Acids Res 43:D1036–D1041. doi: 10.1093/nar/gku1195 PubMedCrossRefGoogle Scholar
  46. Finn RD et al (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251PubMedCrossRefGoogle Scholar
  47. Firon N et al (2006) Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci Hortic 109:212–217. doi: 10.1016/j.scienta.2006.03.007 CrossRefGoogle Scholar
  48. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fondevilla S, Krezdorn N, Rotter B, Kahl G, Winter P (2015) In planta identification of putative pathogenicity factors from the chickpea pathogen Ascochyta rabiei by de novo transcriptome sequencing using RNA-seq and massive analysis of cDNA ends. Front Microbiol 6:1329. doi: 10.3389/fmicb.2015.01329 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fu WJ, Carroll RJ, Wang S (2005) Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics (Oxford, England) 21:1979–1986CrossRefGoogle Scholar
  51. Fukami-Kobayashi K, Nakamura Y, Tamura T, Kobayashi M (2014) SABRE2: a database connecting plant EST/full-length cDNA clones with Arabidopsis information. Plant Cell Physiol 55:e5. doi: 10.1093/pcp/pct177 PubMedCrossRefGoogle Scholar
  52. Fyfe R et al (2009) The European pollen database: past efforts and current activities. Veget Hist Archaeobot 18:417–424. doi: 10.1007/s00334-009-0215-9 CrossRefGoogle Scholar
  53. Giorno F, Wolters-Arts M, Mariani C, Rieu I (2013) Ensuring reproduction at high temperatures: the heat stress response during anther and pollen. Dev Plants 2:489CrossRefGoogle Scholar
  54. Goff SA et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100. doi: 10.1126/science.1068275 PubMedCrossRefGoogle Scholar
  55. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99CrossRefGoogle Scholar
  56. Goodstein DM et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. doi: 10.1093/nar/gkr944 PubMedCrossRefGoogle Scholar
  57. Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. doi: 10.1038/nbt.1883 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Grant-Downton R, Hafidh S, Twell D, Dickinson HG (2009) Small RNA pathways are present and functional in the angiosperm male gametophyte. Mol Plant 2:500–512. doi: 10.1093/mp/ssp003 PubMedCrossRefGoogle Scholar
  59. Grobei MA et al (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 19:1786–1800. doi: 10.1101/gr.089060.108 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Haerizadeh F, Wong CE, Bhalla PL, Gresshoff PM, Singh MB (2009) Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biol 9:25. doi: 10.1186/1471-2229-9-25 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hafidh S, Breznenova K, Ruzicka P, Fecikova J, Capkova V, Honys D (2012) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol 12:24. doi: 10.1186/1471-2229-12-24 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Herrero MP, Johnson RR (1980) High temperature stress and pollen viability of maize. Crop Sci 20:796–800. doi: 10.2135/cropsci1980.0011183X002000060030x CrossRefGoogle Scholar
  63. Hirano H-Y, Sano Y (1991) Molecular characterization of the waxy locus of rice (Oryza sativa). Plant Cell Physiol 32:989–997Google Scholar
  64. Hobo T et al (2008) Various spatiotemporal expression profiles of anther-expressed genes in rice. Plant Cell Physiol 49:1417–1428. doi: 10.1093/pcp/pcn128 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hollender CA, Kang C (2014) Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol 165:1062–1075PubMedPubMedCentralCrossRefGoogle Scholar
  66. Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884. doi: 10.1002/pmic.200402011 PubMedCrossRefGoogle Scholar
  67. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652. doi: 10.1104/pp.103.020925 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85. doi: 10.1186/gb-2004-5-11-r85 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. doi: 10.1038/nature06148 PubMedCrossRefGoogle Scholar
  71. Ke T, Yu J, Dong C, Mao H, Hua W, Liu S (2015) ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism. BMC Plant Biol 15:19. doi: 10.1186/s12870-014-0399-8 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophyte development in rice anthers. Proteomics 3:738–751. doi: 10.1002/pmic.200300424 PubMedCrossRefGoogle Scholar
  73. Kim SY, Hong CB, Lee I (2001) Heat shock stress causes stage-specific male sterility in Arabidopsis thaliana. J Plant Res 114:301–307. doi: 10.1007/PL00013991 CrossRefGoogle Scholar
  74. Kim HJ et al (2008) Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome. BMC Plant Biol 8:101. doi: 10.1186/1471-2229-8-101 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kodama Y, Shumway M, Leinonen R (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40:D54–D56. doi: 10.1093/nar/gkr854 PubMedCrossRefGoogle Scholar
  76. Kolesnikov N et al (2015) ArrayExpress update–simplifying data submissions. Nucleic Acids Res 43:D1113–D1116. doi: 10.1093/nar/gku1057 PubMedCrossRefGoogle Scholar
  77. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. doi: 10.1093/nar/gkt1181 PubMedCrossRefGoogle Scholar
  78. Lamesch P et al (2012) The arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210. doi: 10.1093/nar/gkr1090 PubMedCrossRefGoogle Scholar
  79. Lang V, Usadel B, Obermeyer G (2015) De novo sequencing and analysis of the lily pollen transcriptome: an open access data source for an orphan plant species. Plant Mol Biol 87:69–80. doi: 10.1007/s11103-014-0261-2 PubMedCrossRefGoogle Scholar
  80. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559. doi: 10.1186/1471-2105-9-559 CrossRefGoogle Scholar
  81. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Larranaga P et al (2006) Machine learning in bioinformatics. Briefings Bioinform 7:86–112CrossRefGoogle Scholar
  83. Lee JY, Lee DH (2003) Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol 132:517–529. doi: 10.1104/pp.103.020511 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Li C (2008) Automating dChip: toward reproducible sharing of microarray data analysis. BMC Bioinform 9:231. doi: 10.1186/1471-2105-9-231 CrossRefGoogle Scholar
  85. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics (Oxford, England) 24:713–714. doi: 10.1093/bioinformatics/btn025 CrossRefGoogle Scholar
  86. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics (Oxford, England) 25:2078–2079. doi: 10.1093/bioinformatics/btp352 CrossRefGoogle Scholar
  87. Li XM, Sang YL, Zhao XY, Zhang XS (2013) High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize. PLoS One 8:e72852. doi: 10.1371/journal.pone.0072852 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics (Oxford, England) 30:301–304. doi: 10.1093/bioinformatics/btt688 CrossRefGoogle Scholar
  89. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40:W622–W627. doi: 10.1093/nar/gks540 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lohse M et al (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant, Cell Environ 37:1250–1258. doi: 10.1111/pce.12231 CrossRefGoogle Scholar
  91. Lopez-Casado G et al (2012) Enabling proteomic studies with RNA-Seq: The proteome of tomato pollen as a test case. Proteomics 12:761–774. doi: 10.1002/pmic.201100164 PubMedCrossRefGoogle Scholar
  92. Loraine AE, McCormick S, Estrada A, Patel K, Qin P (2013) RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol 162:1092–1109. doi: 10.1104/pp.112.211441 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Loraine AE, Blakley IC, Jagadeesan S, Harper J, Miller G, Firon N (2015) Analysis and visualization of RNA-Seq expression data using RStudio, Bioconductor, and Integrated Genome Browser Methods in molecular biology (Clifton, NJ) 1284:481-501 doi: 10.1007/978-1-4939-2444-8_24
  94. Lu Y, Wei L, Wang T (2015) Methods to isolate a large amount of generative cells, sperm cells and vegetative nuclei from tomato pollen for “omics” analysis Frontiers in plant science 6:391 doi: 10.3389/fpls.2015.00391
  95. Lukashin AV, Borodovsky M (1998) GeneMark. hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ma J, Skibbe DS, Fernandes J, Walbot V (2008) Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biol 9:R181. doi: 10.1186/gb-2008-9-12-r181 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B (2004) GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol 5:R101. doi: 10.1186/gb-2004-5-12-r101 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Matsui T, Omasa K (2002) Rice (Oryza sativa L.) Cultivars Tolerant to High Temperature at Flowering: Anther Characteristics. Ann Bot 89:683–687. doi: 10.1093/aob/mcf112 PubMedPubMedCentralCrossRefGoogle Scholar
  99. McCarthy FM et al (2011) AgBase: supporting functional modeling in agricultural organisms. Nucleic Acids Res 39:D497–D506. doi: 10.1093/nar/gkq1115 PubMedCrossRefGoogle Scholar
  100. Misra BB, Assmann SM, Chen S (2014) Plant single-cell and single-cell-type metabolomics. Trends Plant Sci 19:637–646. doi: 10.1016/j.tplants.2014.05.005 PubMedCrossRefGoogle Scholar
  101. Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment Bioinformatics (Oxford, England) 15:211-218Google Scholar
  102. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185. doi: 10.1093/nar/gkm321 PubMedPubMedCentralCrossRefGoogle Scholar
  103. NCBI_Resource_Coordinators (2013) Database resources of the National Center for Biotechnology Information Nucleic acids research doi: 10.1093/nar/gkt1146
  104. Noir S, Brautigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266. doi: 10.1016/j.bbrc.2005.09.185 PubMedCrossRefGoogle Scholar
  105. O’Leary NA et al. (2015) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation Nucleic acids research doi: 10.1093/nar/gkv1189
  106. Obermeyer G, Fragner L, Lang V, Weckwerth W (2013) Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiol 162:1822–1833. doi: 10.1104/pp.113.219857 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Oo MM et al (2014) Evaluation of rice promoters conferring pollen-specific expression in a heterologous system, Arabidopsis. Plant Reprod 27:47–58. doi: 10.1007/s00497-014-0239-x PubMedCrossRefGoogle Scholar
  108. Ottaviano E, Mulcahy DL (1989) Genetics of angiosperm pollen. In: John G. Scandalios TRFW, John GS (eds) Advances in genetics, vol 26. Academic Press, Cambridge, pp 1–64. doi: 10.1016/S0065-2660(08)60222-9
  109. Palanivelu R, Tsukamoto T (2012) Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization Wiley interdisciplinary reviews. Dev Biol 1:96–113. doi: 10.1002/wdev.6 Google Scholar
  110. Paterson AH et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556. doi: 10.1038/nature07723 PubMedCrossRefGoogle Scholar
  111. Paupiere MJ, van Heusden AW, Bovy AG (2014) The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Metabolites 4:889–920. doi: 10.3390/metabo4040889 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Peet MM, Sato S, Gardner RG (1998) Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ 21:225–231. doi: 10.1046/j.1365-3040.1998.00281.x CrossRefGoogle Scholar
  113. Pertl H, Schulze WX, Obermeyer G (2009) The pollen organelle membrane proteome reveals highly spatial-temporal dynamics during germination and tube growth of lily pollen. J Proteome Res 8:5142–5152. doi: 10.1021/pr900503f PubMedCrossRefGoogle Scholar
  114. Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756. doi: 10.1104/pp.104.057935 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ploeg A, Heuvelink E (2005) Influence of sub-optimal temperature on tomato growth and yield: a review. J Horticu Sci Biotechnol 80:652–659CrossRefGoogle Scholar
  116. Prasad PVV, Boote KJ, Allen LH Jr, Sheehy JE, Thomas JMG (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411. doi: 10.1016/j.fcr.2005.04.008 CrossRefGoogle Scholar
  117. Pressman E, Peet MM, Pharr DM (2002) The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann Bot 90:631–636PubMedPubMedCentralCrossRefGoogle Scholar
  118. Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van de Peer Y, Vandepoele K (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21:3718–3731. doi: 10.1105/tpc.109.071506 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Qin Y et al (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621. doi: 10.1371/journal.pgen.1000621 PubMedPubMedCentralCrossRefGoogle Scholar
  120. R_Development_Core_Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing,Google Scholar
  121. Redman JC, Haas BJ, Tanimoto G, Town CD (2004) Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant J Cell Mol Biol 38:545–561. doi: 10.1111/j.1365-313X.2004.02061.x CrossRefGoogle Scholar
  122. Reimand J, Arak T, Vilo J (2011) g:Profiler–a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 39:W307–W315. doi: 10.1093/nar/gkr378 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Richmond T, Somerville S (2000) Chasing the dream: plant EST microarrays. Curr Opin Plant Biol 3:108–116PubMedCrossRefGoogle Scholar
  124. Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genom 12:159–162. doi: 10.1152/physiolgenomics.00096.2002 CrossRefGoogle Scholar
  125. Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32:W321–W326PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rounds CM, Winship LJ, Hepler PK (2011) Pollen tube energetics: respiration, fermentation and the race to the ovule. AoB Plants 2011:plr019. doi: 10.1093/aobpla/plr019 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28:73–89. doi: 10.1007/s00497-015-0261-7 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Saeed AI et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378PubMedGoogle Scholar
  129. Saini H, Sedgley M, Aspinall D (1984) Development anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Funct Plant Biol 11:243–253. doi: 10.1071/PP9840243 Google Scholar
  130. Sanetomo R, Hosaka K (2013) Pollen transcriptome analysis of Solanum tuberosum (2n = 4x = 48), S. demissum (2n = 6x = 72), and their reciprocal F1 hybrids. Plant Cell Rep 32:623–636. doi: 10.1007/s00299-013-1395-4 PubMedCrossRefGoogle Scholar
  131. SAS_Institute (2003) The SAS system for windows version 9.1Google Scholar
  132. Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738. doi: 10.1093/aob/mcl037 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Schmid M et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506. doi: 10.1038/ng1543 PubMedCrossRefGoogle Scholar
  134. Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi: 10.1126/science.1178534 PubMedCrossRefGoogle Scholar
  135. Schrauwen JAM, de Groot PFM, van Herpen MMA, van der Lee T, Reynen WH, Weterings KAP, Wullems GJ (1990) Stage-related expression of mRNAs during pollen development in lily and tobacco. Planta 182:298–304. doi: 10.1007/BF00197125 PubMedCrossRefGoogle Scholar
  136. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527. doi: 10.1016/j.devcel.2005.01.018 PubMedCrossRefGoogle Scholar
  137. Sheoran I, Sproule K, Olson DH, Ross AS, Sawhney V (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex Plant Reprod 19:185–196. doi: 10.1007/s00497-006-0035-3 CrossRefGoogle Scholar
  138. Sheoran IS, Ross AR, Olson DJ, Sawhney VK (2007) Proteomic analysis of tomato (Lycopersicon esculentum) pollen. J Exp Bot 58:3525–3535. doi: 10.1093/jxb/erm199 PubMedCrossRefGoogle Scholar
  139. Sheoran IS, Pedersen EJ, Ross ARS, Sawhney VK (2009a) Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta 230:779–793. doi: 10.1007/s00425-009-0983-6 PubMedCrossRefGoogle Scholar
  140. Sheoran IS, Ross AR, Olson DJ, Sawhney VK (2009b) Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis. J Proteom 71:624–636. doi: 10.1016/j.jprot.2008.10.006 CrossRefGoogle Scholar
  141. Sierro N et al (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun. doi: 10.1038/ncomms4833 PubMedPubMedCentralGoogle Scholar
  142. Simel EJ, Saidak LR, Tuskan GA (1997) Method of extracting genomic DNA from non-germinated gymnosperm and angiosperm pollen. Biotechniques 22(390–392):394Google Scholar
  143. Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472. doi: 10.1016/j.cell.2008.12.038 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26:320–322PubMedPubMedCentralCrossRefGoogle Scholar
  145. Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod 26:181–196. doi: 10.1007/s00497-013-0226-7 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Suwabe K et al (2008) Separated transcriptomes of male gametophyte and tapetum in rice: validity of a laser microdissection (LM) microarray. Plant Cell Physiol 49:1407–1416. doi: 10.1093/pcp/pcn124 PubMedPubMedCentralCrossRefGoogle Scholar
  147. The_Arabidopsis_Genome_Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. doi: 10.1038/35048692 CrossRefGoogle Scholar
  148. The_Tomato_Genome_Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  149. Thimm O et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J Cell Mol Biol 37:914–939CrossRefGoogle Scholar
  150. Thompson JD, Gibson T, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protocols Bioinform 2.3. 1–2.3. 22Google Scholar
  151. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics (Oxford, England) 25:1105–1111. doi: 10.1093/bioinformatics/btp120 CrossRefGoogle Scholar
  152. Trapnell C et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. doi: 10.1038/nprot.2012.016 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Twell D (1994) The diversity and regulation of gene expression in the pathway of male gametophyte development—molecular and cellular aspects of plant reproduction. Cambridge University Press, CambridgeGoogle Scholar
  154. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160. doi: 10.1007/s00497-010-0157-5 PubMedCrossRefGoogle Scholar
  155. Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z, Wu W-H (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211. doi: 10.1104/pp.108.126375 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi: 10.1038/nrg2484 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genom 11:338. doi: 10.1186/1471-2164-11-338 CrossRefGoogle Scholar
  158. Wei LQ, Yan LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 12:R53. doi: 10.1186/gb-2011-12-6-r53 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Whittle CA, Malik MR, Li R, Krochko JE (2010) Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus. Plant Mol Biol 72:279–299. doi: 10.1007/s11103-009-9567-x PubMedCrossRefGoogle Scholar
  160. Wienkoop S, Staudinger C, Hoehenwarter W, Weckwerth W, Egelhofer V (2012) ProMEX—–a mass spectral reference database for plant proteomics. Front Plant Sci 3:125. doi: 10.3389/fpls.2012.00125 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Xie F, Sun G, Stiller JW, Zhang B (2011) Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database. PLoS One 6:e26980. doi: 10.1371/journal.pone.0026980 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Xu X et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. doi: 10.1038/nature10158 PubMedCrossRefGoogle Scholar
  163. Yang H, Kaur N, Kiriakopolos S, McCormick S (2006) EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. Planta 224:1004–1014. doi: 10.1007/s00425-006-0283-3 PubMedCrossRefGoogle Scholar
  164. Zajac BK, Amendt J, Horres R, Verhoff MA, Zehner R (2015) De novo transcriptome analysis and highly sensitive digital gene expression profiling of Calliphora vicina (Diptera: Calliphoridae) pupae using MACE (Massive Analysis of cDNA Ends) Forensic science international. Genetics 15:137–146. doi: 10.1016/j.fsigen.2014.11.013 Google Scholar
  165. Zawada AM, Rogacev KS, Muller S, Rotter B, Winter P, Fliser D, Heine GH (2014) Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease. Epigenetics 9:161–172. doi: 10.4161/epi.26931 PubMedCrossRefGoogle Scholar
  166. Zhang Y, Sun Y (2011) HMM-FRAME: accurate protein domain classification for metagenomic sequences containing frameshift errors. BMC Bioinform 12:198CrossRefGoogle Scholar
  167. Zhang L et al (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716. doi: 10.1371/journal.pgen.1000716 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Zhou X, Su Z (2007) EasyGO: gene ontology-based annotation and functional enrichment analysis tool for agronomical species. BMC Genom 8:246. doi: 10.1186/1471-2164-8-246 CrossRefGoogle Scholar
  169. Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968. doi: 10.1093/jxb/erq053 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zou J, Song L, Zhang W, Wang Y, Ruan S, Wu WH (2009) Comparative proteomic analysis of Arabidopsis mature pollen and germinated pollen. J Integr Plant Biol 51:438–455. doi: 10.1111/j.1744-7909.2009.00823.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Agricultural SciencesUniversity of Naples “Federico II”Portici (NA)Italy

Personalised recommendations