Plant Reproduction

, Volume 29, Issue 1–2, pp 149–163 | Cite as

Diversification of fruit shape in the Brassicaceae family

  • Łukasz Łangowski
  • Nicola Stacey
  • Lars Østergaard

Key message

Diversity in fruit shape.


Angiosperms (flowering plants) evolved during the Cretaceous Period more than 100 million years ago and quickly colonized all terrestrial habitats on the planet. A major reason for their success was the formation of fruits that would protect and nurture the developing seeds. Moreover, a massive range of diversity in fruit shape occurred during a relatively short time, which allowed for the development of ingenious ways of fertilization as well as strategies for efficient seed dispersal. The Brassicaceae family more than any exemplifies the diversity in fruit morphologies, thus providing an ideal group of plants to study how specific shapes are established. Although many genes controlling fruit patterning in the model plant Arabidopsis thaliana have been identified, the processes of carpel and fruit morphogenesis are still poorly understood. Moreover, Arabidopsis fruits are relatively simple in their structure and are therefore not ideally suited for analyzing processes of morphology determination without comparison to species with differently shaped fruits. Here, we review the diversity of fruit shape within the Brassicaceae family. As an example we describe the close relative of Arabidopsis, Capsella rubella that develops flat, heart-shaped fruits showing and highlighting its potential as a model system for research into organ shape. Recent progress in genomics including fast and cheap genome sequencing and annotation as well as development of mutant populations has opened entirely new and exciting possibilities of studying the mechanisms and processes underlying fruit formation in angiosperms.


Brassicaceae Arabidopsis Capsella Fruit shape Fruit development Plant hormones 



We are grateful to Andrew Davies for photography and to Mónica Pernas Ochoa, Rachel Wells, Colin Morgan, Pauline Stephenson, and Judith Irwin for providing plant material. We thank Günter Theissen for the 35S::LcFUL line and Michael Lenhard and Adrien Sicard for the Capsella ful mutant line. This work was supported by the Institute Strategic Programme grant (BB/J004553/1) from the Biotechnology and Biological Sciences Research Council to the John Innes Centre.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. Alvarez J, Smyth DR (1999) CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 126:2377–2386PubMedGoogle Scholar
  2. Arnaud N et al (2010) Gibberellins control fruit patterning in Arabidopsis thaliana. Genes Dev 24:2127–2132. doi: 10.1101/gad.593410 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arnaud N, Lawrenson T, Ostergaard L, Sablowski R (2011) The same regulatory point mutation changed seed-dispersal structures in evolution and domestication. Curr Biol CB 21:1215–1219. doi: 10.1016/j.cub.2011.06.008 PubMedCrossRefGoogle Scholar
  4. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741. doi: 10.1105/tpc.016238 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Autran D et al (2002) Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J 21:6036–6049PubMedPubMedCentralCrossRefGoogle Scholar
  6. Avino M, Kramer EM, Donohue K, Hammel AJ, Hall JC (2012) Understanding the basis of a novel fruit type in Brassicaceae: conservation and deviation in expression patterns of six genes. EvoDevo. doi: 10.1186/2041-9139-3-20 PubMedPubMedCentralGoogle Scholar
  7. Azzi L, Deluche C, Gevaudant F, Frangne N, Delmas F, Hernould M, Chevalier C (2015) Fruit growth-related genes in tomato. J Exp Bot 66:1075–1086. doi: 10.1093/jxb/eru527 PubMedCrossRefGoogle Scholar
  8. Bai Y, Falk S, Schnittger A, Jakoby MJ, Hulskamp M (2010) Tissue layer specific regulation of leaf length and width in Arabidopsis as revealed by the cell autonomous action of ANGUSTIFOLIA. Plant J Cell Mol Biol 61:191–199. doi: 10.1111/j.1365-313X.2009.04050.x CrossRefGoogle Scholar
  9. Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260. doi: 10.1093/mp/sss154 PubMedCrossRefGoogle Scholar
  10. Bailey CD et al (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160. doi: 10.1093/molbev/msl087 PubMedCrossRefGoogle Scholar
  11. Bak S, Beisson F, Bishop G, Hamberger B, Hofer R, Paquette S, Werck-Reichhart D (2011) Cytochromes p450 Arabidopsis Book 9:e0144. doi: 10.1199/tab.0144
  12. Balanza V, Navarrete M, Trigueros M, Ferrandiz C (2006) Patterning the female side of Arabidopsis: the importance of hormones. J Exp Bot 57:3457–3469. doi: 10.1093/jxb/erl188 PubMedCrossRefGoogle Scholar
  13. Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971. doi: 10.1038/35050091 PubMedCrossRefGoogle Scholar
  14. Carbonell J, Garcia-Martinez JL (1985) Ribulose-1,5-bisphosphate carboxylase and fruit set or degeneration of unpollinated ovaries of Pisum sativum L. Planta 164:534–539. doi: 10.1007/BF00395972 PubMedCrossRefGoogle Scholar
  15. Chen Q, Atkinson A, Otsuga D, Christensen T, Reynolds L, Drews GN (1999) The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation. Development 126:2715–2726PubMedGoogle Scholar
  16. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37. doi: 10.1038/353031a0 PubMedCrossRefGoogle Scholar
  17. Coomb BG (1976) The development of fleshy fruits. Annu Rev Plant Physiol 27:507–528CrossRefGoogle Scholar
  18. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326. doi: 10.1038/35030000 PubMedCrossRefGoogle Scholar
  19. de Jong M, Mariani C, Vriezen WH (2009a) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532. doi: 10.1093/jxb/erp094 PubMedCrossRefGoogle Scholar
  20. de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009b) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J Cell Mol Biol 57:160–170. doi: 10.1111/j.1365-313X.2008.03671.x CrossRefGoogle Scholar
  21. de Jong M, Wolters-Arts M, Garcia-Martinez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. J Exp Bot 62:617–626. doi: 10.1093/jxb/erq293 PubMedCrossRefGoogle Scholar
  22. De Veylder L et al (2001) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1653–1668PubMedPubMedCentralCrossRefGoogle Scholar
  23. De Veylder L et al (2002) Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa–DPa transcription factor. EMBO J 21:1360–1368. doi: 10.1093/emboj/21.6.1360 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dennis AJ (2007) Seed dispersal: theory and its application in a changing world. Wallingford, UKCrossRefGoogle Scholar
  25. Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–1019PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dewitte W, Murray JA (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264. doi: 10.1146/annurev.arplant.54.031902.134836 PubMedCrossRefGoogle Scholar
  27. Dinneny JR, Yadegari R, Fischer RL, Yanofsky MF, Weigel D (2004) The role of JAGGED in shaping lateral organs. Development 131:1101–1110. doi: 10.1242/dev.00949 PubMedCrossRefGoogle Scholar
  28. Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J Cell Mol Biol 58:318–332. doi: 10.1111/j.1365-313X.2008.03781.x CrossRefGoogle Scholar
  29. Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991–1002PubMedCrossRefGoogle Scholar
  30. Eklund DM et al (2010) Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137:1275–1284. doi: 10.1242/dev.039594 PubMedCrossRefGoogle Scholar
  31. Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14:119–131PubMedPubMedCentralCrossRefGoogle Scholar
  32. Evangelista D, Hotton S, Dumais J (2011) The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J Exp Biol 214:521–529. doi: 10.1242/jeb.050567 PubMedCrossRefGoogle Scholar
  33. Ferrandiz C, Fourquin C (2014) Role of the FUL-SHP network in the evolution of fruit morphology and function. J Exp Bot 65:4505–4513. doi: 10.1093/jxb/ert479 PubMedCrossRefGoogle Scholar
  34. Ferrandiz C, Pelaz S, Yanofsky MF (1999) Control of carpel and fruit development in Arabidopsis. Annu Rev Biochem 68:321–354. doi: 10.1146/annurev.biochem.68.1.321 PubMedCrossRefGoogle Scholar
  35. Ferrandiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438PubMedCrossRefGoogle Scholar
  36. Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, Ostergaard L (2012) Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. Plant Cell 24:3982–3996. doi: 10.1105/tpc.112.103192 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Garcia-Martinez JL, Carbonell J (1980) Fruit-set of unpollinated ovaries of Pisum sativum L.: influence of plant-growth regulators. Planta 147:451–456. doi: 10.1007/BF00380187 PubMedCrossRefGoogle Scholar
  38. Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451. doi: 10.1105/tpc.5.10.1439 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Girin T et al (2011) INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in arabidopsis. Plant Cell 23:3641–3653. doi: 10.1105/tpc.111.090944 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20:1217–1230. doi: 10.1105/tpc.107.057877 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gonzalez-Reig S, Ripoll JJ, Vera A, Yanofsky MF, Martinez-Laborda A (2012) Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit. PLoS Genet 8:e1003020. doi: 10.1371/journal.pgen.1003020 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Goto K, Kyozuka J, Bowman JL (2001) Turning floral organs into leaves, leaves into floral organs. Curr Opin Genet Dev 11:449–456PubMedCrossRefGoogle Scholar
  43. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517PubMedGoogle Scholar
  44. Gustafson FG (1936) Inducement of fruit development by growth-promoting chemicals. Proc Natl Acad Sci USA 22:628–636PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gustafson FG (1939) Auxin distribution in fruits and its significance in fruit development. Am J Bot 26:189–194CrossRefGoogle Scholar
  46. Hall JC, Tisdale TE, Donohue K, Kramer EM (2006) Developmental basis of an anatomical novelty: heteroarthrocarpy in Cakile lanceolata and Erucaria erucarioides (Brassicaceae). Int J Plant Sci 167:771–789. doi: 10.1086/504928 CrossRefGoogle Scholar
  47. Hase Y, Tanaka A, Baba T, Watanabe H (2000) FRL1 is required for petal and sepal development in Arabidopsis. Plant J Cell Mol Biol 24:21–32CrossRefGoogle Scholar
  48. Hase Y, Fujioka S, Yoshida S, Sun G, Umeda M, Tanaka A (2005) Ectopic endoreduplication caused by sterol alteration results in serrated petals in Arabidopsis. J Exp Bot 56:1263–1268. doi: 10.1093/jxb/eri122 PubMedCrossRefGoogle Scholar
  49. Hay AS et al (2014) Cardamine hirsuta: a versatile genetic system for comparative studies. Plant J Cell Mol Biol 78:1–15. doi: 10.1111/tpj.12447 CrossRefGoogle Scholar
  50. Heisler MG, Atkinson A, Bylstra YH, Walsh R, Smyth DR (2001) SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development 128:1089–1098PubMedGoogle Scholar
  51. Hemerly A, Engler Jde A, Bergounioux C, Van Montagu M, Engler G, Inze D, Ferreira P (1995) Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J 14:3925–3936PubMedPubMedCentralGoogle Scholar
  52. Ikeuchi M, Yamaguchi T, Kazama T, Ito T, Horiguchi G, Tsukaya H (2011) ROTUNDIFOLIA4 regulates cell proliferation along the body axis in Arabidopsis shoot. Plant Cell Physiol 52:59–69. doi: 10.1093/pcp/pcq138 PubMedCrossRefGoogle Scholar
  53. Ito T, Kim GT, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13- homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22:257–264PubMedCrossRefGoogle Scholar
  54. Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52:831–841PubMedCrossRefGoogle Scholar
  55. Kanno A, Nakada M, Akita Y, Hirai M (2007) Class B gene expression and the modified ABC model in nongrass monocots. Sci World J 7:268–279. doi: 10.1100/tsw.2007.86 CrossRefGoogle Scholar
  56. Kim GT, Tsukaya H, Saito Y, Uchimiya H (1999) Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc Natl Acad Sci USA 96:9433–9437PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kim GT et al (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 21:1267–1279. doi: 10.1093/emboj/21.6.1267 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Knapp S (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Bot 53:2001–2022PubMedCrossRefGoogle Scholar
  59. Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698. doi: 10.1038/nrg1675 PubMedCrossRefGoogle Scholar
  60. Krogan NT, Hogan K, Long JA (2012) APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 139:4180–4190. doi: 10.1242/dev.085407 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kumar V, Irfan M, Ghosh S, Chakraborty N, Chakraborty S, Datta A (2015) Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma. doi: 10.1007/s00709-015-0836-z Google Scholar
  62. Kumaran MK, Bowman JL, Sundaresan V (2002) YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 14:2761–2770PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kuusk S, Sohlberg JJ, Long JA, Fridborg I, Sundberg E (2002) STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development. Development 129:4707–4717PubMedGoogle Scholar
  64. Lenser T, Theissen G (2013) Conservation of fruit dehiscence pathways between Lepidium campestre and Arabidopsis thaliana sheds light on the regulation of INDEHISCENT. Plant J Cell Mol Biol 76:545–556. doi: 10.1111/tpj.12321 CrossRefGoogle Scholar
  65. Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770. doi: 10.1038/35008089 PubMedCrossRefGoogle Scholar
  66. Liljegren SJ et al (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116:843–853PubMedCrossRefGoogle Scholar
  67. Marsch-Martinez N, de Folter S (2016) Hormonal control of the development of the gynoecium. Curr Opin Plant Biol 29:104–114. doi: 10.1016/j.pbi.2015.12.006 PubMedCrossRefGoogle Scholar
  68. Marsch-Martinez N et al (2014) The NTT transcription factor promotes replum development in Arabidopsis fruits. Plant J Cell Mol Biol 80:69–81. doi: 10.1111/tpj.12617 CrossRefGoogle Scholar
  69. Marti C, Orzaez D, Ellul P, Moreno V, Carbonell J, Granell A (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J Cell Mol Biol 52:865–876. doi: 10.1111/j.1365-313X.2007.03282.x CrossRefGoogle Scholar
  70. Mazzucato A, Taddei AR, Soressi GP (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125:107–114PubMedGoogle Scholar
  71. Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315. doi: 10.1146/annurev-arplant-042809-112305 PubMedCrossRefGoogle Scholar
  73. Monforte AJ, Diaz A, Cano-Delgado A, van der Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637. doi: 10.1093/jxb/eru017 PubMedCrossRefGoogle Scholar
  74. Moubayidin L, Ostergaard L (2014) Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development. Curr Biol CB 24:2743–2748. doi: 10.1016/j.cub.2014.09.080 PubMedCrossRefGoogle Scholar
  75. Moubayidin L, Ostergaard L (2015) Symmetry matters. New Phytol 207:985–990. doi: 10.1111/nph.13526 PubMedCrossRefGoogle Scholar
  76. Nakaya M, Tsukaya H, Murakami N, Kato M (2002) Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol 43:239–244PubMedCrossRefGoogle Scholar
  77. Narita NN et al (2004) Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant J Cell Mol Biol 38:699–713. doi: 10.1111/j.1365-313X.2004.02078.x CrossRefGoogle Scholar
  78. Nathan R et al (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413. doi: 10.1038/nature00844 PubMedCrossRefGoogle Scholar
  79. Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10. doi: 10.1006/abbi.1999.1352 PubMedCrossRefGoogle Scholar
  80. Nicol F, Hofte H (1998) Plant cell expansion: scaling the wall. Curr Opin Plant Biol 1:12–17PubMedCrossRefGoogle Scholar
  81. Ohno CK, Reddy GV, Heisler MG, Meyerowitz EM (2004) The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development 131:1111–1122. doi: 10.1242/dev.00991 PubMedCrossRefGoogle Scholar
  82. Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888. doi: 10.1007/s00425-007-0533-z PubMedCrossRefGoogle Scholar
  83. Ozga JA, Reinecke DM (1999) Interaction of 4-chloroindole-3-acetic acid and gibberellins in early pea fruit development. Plant Growth Regul 27:33–38. doi: 10.1023/A:1006151401685 CrossRefGoogle Scholar
  84. Pires N, Dolan L (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol 27:862–874PubMedCrossRefGoogle Scholar
  85. Rajani S, Sundaresan V (2001) The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol CB 11:1914–1922PubMedCrossRefGoogle Scholar
  86. Reyes-Olalde JI, Zuniga-Mayo VM, Chavez Montes RA, Marsch-Martinez N, de Folter S (2013) Inside the gynoecium: at the carpel margin. Trends Plant Sci 18:644–655. doi: 10.1016/j.tplants.2013.08.002 PubMedCrossRefGoogle Scholar
  87. Rieu I et al (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436. doi: 10.1105/tpc.108.058818 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ripoll JJ, Roeder AH, Ditta GS, Yanofsky MF (2011) A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Development 138:5167–5176. doi: 10.1242/dev.073031 PubMedCrossRefGoogle Scholar
  89. Ripoll J, Urban L, Brunel B, Bertin N (2015) Water deficit effects on tomato quality depend on fruit developmental stage and genotype. J Plant Physiol 190:26–35. doi: 10.1016/j.jplph.2015.10.006 PubMedCrossRefGoogle Scholar
  90. Rodriguez-Cazorla E, Ripoll JJ, Andujar A, Bailey LJ, Martinez-Laborda A, Yanofsky MF, Vera A (2015) K-homology nuclear ribonucleoproteins regulate floral organ identity and determinacy in arabidopsis. PLoS Genet 11:e1004983. doi: 10.1371/journal.pgen.1004983 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Roeder AH, Yanofsky MF (2006) Fruit development in Arabidopsis Book 4:e0075. doi: 10.1199/tab.0075
  92. Roeder AH, Ferrandiz C, Yanofsky MF (2003) The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol CB 13:1630–1635PubMedCrossRefGoogle Scholar
  93. Sauret-Gueto S, Schiessl K, Bangham A, Sablowski R, Coen E (2013) JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field. PLoS Biol 11:e1001550. doi: 10.1371/journal.pbio.1001550 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sawa S, Ito T, Shimura Y, Okada K (1999a) FILAMENTOUS FLOWER controls the formation and development of arabidopsis inflorescences and floral meristems. Plant Cell 11:69–86PubMedPubMedCentralGoogle Scholar
  95. Sawa S et al (1999b) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schmidt A, Schmid MW, Grossniklaus U (2015) Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142:229–241. doi: 10.1242/dev.102103 PubMedCrossRefGoogle Scholar
  97. Schroeder CA (1953) Growth and development of the Fuerte avocado fruit. Proc Am Soc Hortic Sci 61:103–109Google Scholar
  98. Schuler MDH, Bilgin M, Ali S (2006) Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry. Phytochem Rev 5:205–237CrossRefGoogle Scholar
  99. Sessions RA, Zambryski PC (1995) Arabidopsis gynoecium structure in the wild type and in ettin mutants. Development 121:1519–1532PubMedGoogle Scholar
  100. Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241. doi: 10.1146/annurev-arplant-050312-120057 PubMedCrossRefGoogle Scholar
  101. Shull G (1914) Duplicate genes for capsule-form in Capsella bursa-pastoris. Mol Gen Genet 12:97–149CrossRefGoogle Scholar
  102. Sicard A et al (2014) Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene. Curr Biol CB 24:1880–1886. doi: 10.1016/j.cub.2014.06.061 PubMedCrossRefGoogle Scholar
  103. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128PubMedGoogle Scholar
  104. Singh G (2004) Plant systematics: an integrated approach. Science Publishers, Enfield-PlymouthGoogle Scholar
  105. Slotte T, Ceplitis A, Neuffer B, Hurka H, Lascoux M (2006) Intrageneric phylogeny of Capsella (Brassicaceae) and the origin of the tetraploid C. bursa-pastoris based on chloroplast and nuclear DNA sequences. Am J Bot 93:1714–1724. doi: 10.3732/ajb.93.11.1714 PubMedCrossRefGoogle Scholar
  106. Slotte T et al (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45:831–835. doi: 10.1038/ng.2669 PubMedCrossRefGoogle Scholar
  107. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767. doi: 10.1105/tpc.2.8.755 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sorefan K et al (2009) A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459:583–586. doi: 10.1038/nature07875 PubMedCrossRefGoogle Scholar
  109. Sotelo-Silveira M, Cucinotta M, Chauvin AL, Chavez Montes RA, Colombo L, Marsch-Martinez N, de Folter S (2013) Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. Plant Physiol 162:779–799. doi: 10.1104/pp.113.218214 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Spence J, Vercher Y, Gates P, Harris N (1996) ‘Pod shatter’ in Arabidopsis thaliana Brassica napus and B-juncea. J Microsc-Oxford 181:195–203CrossRefGoogle Scholar
  111. Sugimoto-Shirasu K, Stacey NJ, Corsar J, Roberts K, McCann MC (2002) DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. Curr Biol CB 12:1782–1786PubMedCrossRefGoogle Scholar
  112. Talon M, Zacarias L, Primo-Millo E (1992) Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol 99:1575–1581PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tsukaya H (2003) Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol 6:57–62PubMedCrossRefGoogle Scholar
  114. Vialette-Guiraud A, Vandenbussche M (2012) Evolution and development of the flower. Biol Aujourdhui 206:47–55. doi: 10.1051/jbio/2012007 PubMedCrossRefGoogle Scholar
  115. Vivian-Smith A, Koltunow AM (1999) Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiol 121:437–451PubMedPubMedCentralCrossRefGoogle Scholar
  116. Vivian-Smith A, Luo M, Chaudhury A, Koltunow A (2001) Fruit development is actively restricted in the absence of fertilization in Arabidopsis. Development 128:2321–2331PubMedGoogle Scholar
  117. Vlad D et al (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343:780–783. doi: 10.1126/science.1248384 PubMedCrossRefGoogle Scholar
  118. Voelckel C et al (2010) Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon. BMC Evol Biol 10:151. doi: 10.1186/1471-2148-10-151 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wang L, Zhang SC, Liang SD, Liu ZH, Li HY, Wang YJ (2005) Characterization and expression of AmphiARF gene encoding a new member of ARF family from amphioxus Branchiostoma belcheri tsingtauense. DNA Seq 16:418–425. doi: 10.1080/10425170500287526 PubMedCrossRefGoogle Scholar
  120. Watanabe K, Okada K (2003) Two discrete cis elements control the Abaxial side-specific expression of the FILAMENTOUS FLOWER gene in Arabidopsis. Plant Cell 15:2592–2602. doi: 10.1105/tpc.015214 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wen J, Lease KA, Walker JC (2004) DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J Cell Mol Biol 37:668–677CrossRefGoogle Scholar
  122. Werck-Reichhart D, Bak S, Paquette S (2002) Cytochromes p450 Arabidopsis Book 1:e0028. doi: 10.1199/tab.0028
  123. Wollmann H, Mica E, Todesco M, Long JA, Weigel D (2010) On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137:3633–3642. doi: 10.1242/dev.036673 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wu Y, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543–1553PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Łukasz Łangowski
    • 1
  • Nicola Stacey
    • 1
  • Lars Østergaard
    • 1
  1. 1.Department of Crop GeneticsJohn Innes CentreNorfolk, NorwichUK

Personalised recommendations