Advertisement

Plant Reproduction

, Volume 29, Issue 1–2, pp 31–51 | Cite as

Male gametophyte development and function in angiosperms: a general concept

  • Said Hafidh
  • Jan Fíla
  • David Honys
Review
Part of the following topical collections:
  1. Pollen development and stress response

Key message

Overview of pollen development.

Abstract

Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis—developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca2+ and H+ ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.

Keywords

Pollen development Male gametophyte Pollen tube growth Flowering plants 

Notes

Acknowledgments

The authors thank Barbora Honysová for drawing the Figs. 1 and 2 and Nina Lindstrøm Friggens for assistance with drawing Fig. 3 and the language editing of the manuscript. The authors acknowledge the financial support from the Czech Science Foundation Grants No. 15-22720S, 14-32292S, P305/12/2611 and 15-16050S and Ministry of Education, Youth and Sport CR project COST LD14109.

Supplementary material

497_2015_272_MOESM1_ESM.tif (173 kb)
Transcriptome profile of Arabidopsis cysteine-rich receptor-like protein kinases. The five CRK genes with enriched expression in pollen and in sperm cells are highlighted. (TIFF 173 kb)
497_2015_272_MOESM2_ESM.xlsx (1.4 mb)
The list of Arabidopsis protein kinases identified in the transcriptomic (Honys and Twell 2003), proteomic (Grobei et al. 2009) and phosphoproteomic (Mayank et al. 2012) datasets of mature pollen. (XLSX 1477 kb)
497_2015_272_MOESM3_ESM.xlsx (66 kb)
Arabidopsis cysteine-rich polypeptides of < 150 aa’s and predicted as secreted proteins outsourced from UniProt protein repository and analysed by SignalP (Petersen et al. 2011) and SecretomeP (Bendtsen et al. 2004). Dataset 2 is a list of Arabidopsis cysteine-rich receptor-like protein kinases with predicted single pass membrane helices and membrane localization. (XLSX 66 kb)
497_2015_272_MOESM4_ESM.xlsx (50 kb)
A list of Arabidopsis GPI-anchored proteins with predicted secretion by signalP and secretomeP as well as their putative C-terminal GPI-anchor site based on Big-Pi (Eisenhaber et al. 2003) and PredGPI prediction algorithms (Pierlioni et al. 2008). (XLSX 49 kb)

References

  1. Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013) TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:1057–1068. doi: 10.1111/tpj.12093 PubMedCrossRefGoogle Scholar
  2. Allwood EG, Anthony RG, Smertenko AP, Reichelt S, Drobak BK, Doonan JH, Weeds AG, Hussey PJ (2002) Regulation of the pollen-specific actin-depolymerizing factor LIADF1. Plant Cell 14:2915–2927. doi: 10.1105/tpc.005363 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arata H, Higashiyama T (2014) Poly(dimethylsiloxane)-based microdevices for studying plant reproduction. Biochem Soc Trans 42:320–324. doi: 10.1042/bst20130258 PubMedCrossRefGoogle Scholar
  4. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. In: Merchant SS, Briggs WR, Ort D (eds) Annual Review of Plant Biology, vol 62, pp 437–460Google Scholar
  5. Barnabas B, Fridvalszky L (1984) Adhesion and germination of differently treated maize pollen grains on the stigma. Acta Bot Hung 30:329–332Google Scholar
  6. Beale KM, Leydon AR, Johnson MA (2012) Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr Biol 22:1090–1094. doi: 10.1016/j.cub.2012.04.041 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4:879–887PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356. doi: 10.1093/protein/gzh037 PubMedCrossRefGoogle Scholar
  9. Berger F, Twell D (2011) Germline specification and function in plants. Annu Rev Plant Biol 62:461–484. doi: 10.1146/annurev-arplant-042110-103824 PubMedCrossRefGoogle Scholar
  10. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348:241–255. doi: 10.1042/0264-6021:3480241 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bleckmann A, Alter S, Dresselhaus T (2014) The beginning of a seed: regulatory mechanisms of double fertilization. Front Plant Sci 5:452. doi: 10.3389/fpls.2014.00452 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4:231–237. doi: 10.1038/nmeth1005 PubMedCrossRefGoogle Scholar
  13. Bokvaj P, Hafidh S, Honys D (2015) Transcriptome profiling of male gametophyte development Nicotiana tabacum. Genom Data 3:106–111PubMedCrossRefGoogle Scholar
  14. Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478. doi: 10.1093/jxb/ern355 PubMedCrossRefGoogle Scholar
  15. Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D (2011) The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23:534–549. doi: 10.1105/tpc.110.081059 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181. doi: 10.1104/pp.108.125229 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brett C, Waldron K (1990) Physiology and biochemistry of plant cell walls. Unwin Hyman, LondonCrossRefGoogle Scholar
  18. Brewbaker JL (1967) Distribution and phylogenetic significance of binucleate and trinucleate pollen grains in angiosperms. Am J Bot 54:1069–1083. doi: 10.2307/2440530 CrossRefGoogle Scholar
  19. Camacho L, Malho R (2003) Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J Exp Bot 54:83–92. doi: 10.1093/jxb/erg043 PubMedCrossRefGoogle Scholar
  20. Cannon MC, Terneus K, Hall Q, Tan L, Wang Y, Wegenhart BL, Chen L, Lamport DT, Chen Y, Kieliszewski MJ (2008) Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA 105:2226–2231. doi: 10.1073/pnas.0711980105 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Čapková V, Hrabětová E, Tupý J (1988) Protein synthesis in pollen tubes: preferential formation of new species independent of transcription. Sex Plant Reprod 1:150–155CrossRefGoogle Scholar
  22. Čapková V, Fidlerová A, van Amstel T, Croes AF, Mata C, Schrauwen JAM, Wullems GJ, Tupý J (1997) Role of N-glycosylation of 66 and 69 kDa glycoproteins in wall formation during pollen tube growth in vitro. Eur J Cell Biol 72:282–285PubMedGoogle Scholar
  23. Capron A, Gourgues M, Neiva LS, Faure JE, Berger F, Pagnussat G, Krishnan A, Alvarez-Mejia C, Vielle-Calzada JP, Lee YR, Liu B, Sundaresan V (2008) Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–3049. doi: 10.1105/tpc.108.061713 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chae K, Lord EM (2011) Pollen tube growth and guidance: roles of small, secreted proteins. Ann Bot 108:627–636. doi: 10.1093/aob/mcr015 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chaturvedi P, Ischebeck T, Egelhofer V, Lichtscheidl I, Weckwerth W (2013) Cell-specific analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides evidence for developmental priming. J Proteome Res 12:4892–4903. doi: 10.1021/pr400197p PubMedCrossRefGoogle Scholar
  26. Chen XY, Kim JY (2009) Callose synthesis in higher plants. Plant Signal Behav 4:489–492PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu HM, Cheung AY (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190. doi: 10.1105/tpc.003038 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, Sreenivasan R, Baskar R, Grossniklaus U, Yang WC (2007) The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–3577. doi: 10.1105/tpc.107.053967 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen Y, Liu P, Hoehenwarter W, Lin J (2012) Proteomic and phosphoproteomic analysis of Picea wilsonii pollen development under nutrient limitation. J Proteome Res 11:4180–4190. doi: 10.1021/pr300295m PubMedCrossRefGoogle Scholar
  30. Cheung AY, Boavida LC, Aggarwal M, Wu HM, Feijó JA (2010) The pollen tube journey in the pistil and imaging the in vivo process by two-photon microscopy. J Exp Bot 61:1907–1915. doi: 10.1093/jxb/erq062 PubMedCrossRefGoogle Scholar
  31. Choudhary P, Saha P, Ray T, Tang Y, Yang D, Cannon MC (2015) EXTENSIN18 is required for full male fertility as well as normal vegetative growth in Arabidopsis. Front Plant Sci 6:553. doi: 10.3389/fpls.2015.00553 PubMedPubMedCentralCrossRefGoogle Scholar
  32. de Graaf BHJ, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17:2564–2579. doi: 10.1105/tpc.105.033183 PubMedPubMedCentralCrossRefGoogle Scholar
  33. De Storme N, Geelen D (2013) Cytokinesis in plant male meiosis. Plant Signal Behav 8:e23394. doi: 10.4161/psb.23394 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dobritsa AA, Coerper D (2012) The novel plant protein INAPERTURATE POLLEN1 marks distinct cellular domains and controls formation of apertures in the Arabidopsis pollen exine. Plant Cell 24:4452–4464. doi: 10.1105/tpc.112.101220 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Moller BL, Preuss D (2009) CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589. doi: 10.1104/pp.109.144469 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dobritsa AA, Lei Z, Nishikawa S, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol 153:937–955. doi: 10.1104/pp.110.157446 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dobritsa AA, Geanconteri A, Shrestha J, Carlson A, Kooyers N, Coerper D, Urbanczyk-Wochniak E, Bench BJ, Sumner LW, Swanson R, Preuss D (2011) A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production. Plant Physiol 157:947–970. doi: 10.1104/pp.111.179523 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dresselhaus T, Franklin-Tong N (2013) Male–female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036. doi: 10.1093/mp/sst061 PubMedCrossRefGoogle Scholar
  39. Dresselhaus T, Sprunck S (2012) Plant fertilization: maximizing reproductive success. Curr Biol 22:R487–R489. doi: 10.1016/j.cub.2012.04.048 PubMedCrossRefGoogle Scholar
  40. Dunn JD, Reid GE, Bruening ML (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev 29:29–54. doi: 10.1002/mas.20219 PubMedGoogle Scholar
  41. Dupľáková N, Reňák D, Hovanec P, Honysová B, Twell D, Honys D (2007) Arabidopsis Gene Family Profiler (aGFP): user-oriented transcriptomic database with easy-to-use graphic interface. BMC Plant Biol 7:39. doi: 10.1186/1471-2229-7-39 CrossRefGoogle Scholar
  42. Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database: an update. Nucleic Acids Res 38:D828–D834. doi: 10.1093/nar/gkp810 PubMedCrossRefGoogle Scholar
  43. Eady C, Lindsey K, Twell D (1995) The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell 7:65–74. doi: 10.1105/tpc.7.1.65 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Eisenhaber B, Wildpaner M, Schultz CJ, Borner GH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133:1691–1701. doi: 10.1104/pp.103.023580 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Elfving F (1879) Studien über die Pollenkörner der Angiospermen. Jenaische Zeitschrift für Naturwissenschaft 13:1–28Google Scholar
  46. Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol 153:403–419. doi: 10.1104/pp.110.156000 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Feher A, Lajko DB (2015) Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins. Plant Sci 237:93–107. doi: 10.1016/j.plantsci.2015.05.007 PubMedCrossRefGoogle Scholar
  48. Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496. doi: 10.1083/jcb.144.3.483 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Feijó JA, Costa SS, Prado AM, Becker JD, Certal AC (2004) Signalling by tips. Curr Opin Plant Biol 7:589–598. doi: 10.1016/j.pbi.2004.07.014 PubMedCrossRefGoogle Scholar
  50. Fellenberg C, Vogt T (2015) Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends Plant Sci 20:212–218. doi: 10.1016/j.tplants.2015.01.011 PubMedCrossRefGoogle Scholar
  51. Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460. doi: 10.1007/s004250050421 CrossRefGoogle Scholar
  52. Fidlerová A, Smýkal P, Tupý J, Čapková V (2001) Glycoproteins 66 and 69 kDa of pollen tube wall: properties and distribution in angiosperms. J Plant Physiol 158:1367–1374. doi: 10.1078/0176-1617-00562 CrossRefGoogle Scholar
  53. Fíla J, Honys D (2012) Enrichment techniques employed in phosphoproteomics. Amino Acids 43:1025–1047. doi: 10.1007/s00726-011-1111-z PubMedCrossRefGoogle Scholar
  54. Fíla J, Čapková V, Feciková J, Honys D (2011) Impact of homogenization and protein extraction conditions on the obtained tobacco pollen proteomic patterns. Biol Plant 55:499–506. doi: 10.1007/s10535-011-0116-5 CrossRefGoogle Scholar
  55. Fíla J, Matros A, Radau S, Zahedi RP, Čapková V, Mock H-P, Honys D (2012) Revealing phosphoproteins playing role in tobacco pollen activated in vitro. Proteomics 12:3229–3250. doi: 10.1002/pmic.201100318 PubMedCrossRefGoogle Scholar
  56. Fíla J, Čapková V, Honys D (2014) Phosphoproteomic studies in Arabidopsis and tobacco male gametophytes. Biochem Soc Trans 42:383–387. doi: 10.1042/bst20130249 PubMedCrossRefGoogle Scholar
  57. Firon N, Nepi M, Pacini E (2012) Water status and associated processes mark critical stages in pollen development and functioning. Ann Bot 109:1201–1213. doi: 10.1093/aob/mcs070 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fu Y, Wu G, Yang ZB (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032. doi: 10.1083/jcb.152.5.1019 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Furness CA, Rudall PJ (2004) Pollen aperture evolution: a crucial factor for eudicot success? Trends Plant Sci 9:154–158. doi: 10.1016/j.tplants.2004.01.001 PubMedCrossRefGoogle Scholar
  60. Gaillard A, Vergne P, Beckert M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10:55–58. doi: 10.1007/BF00236456 PubMedCrossRefGoogle Scholar
  61. Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R, Roschitzki B, Basler K, Ahrens CH, Grossniklaus U (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 19:1786–1800. doi: 10.1101/gr.089060.108 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Guan Y, Guo J, Li H, Yang Z (2013) Signaling in pollen tube growth: crosstalk, feedback, and missing links. Mol Plant 6:1053–1064. doi: 10.1093/mp/sst070 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hafidh S, Čapková V, Honys D (2011) Safe keeping the message: mRNP complexes tweaking after transcription. Adv Exp Med Biol 722:118–136. doi: 10.1007/978-1-4614-0332-6_8 PubMedCrossRefGoogle Scholar
  64. Hafidh S, Breznenová K, Honys D (2012a) De novo post-pollen mitosis II tobacco pollen tube transcriptome. Plant Signal Behav 7:918–921. doi: 10.4161/psb.20745 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hafidh S, Breznenová K, Růžička P, Feciková J, Čapková V, Honys D (2012b) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol 12:24. doi: 10.1186/1471-2229-12-24 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hafidh S, Potěšil D, Fíla J, Feciková J, Čapková V, Zdráhal Z, Honys D (2014) In search of ligands and receptors of the pollen tube: the missing link in pollen tube perception. Biochem Soc Trans 42:388–394. doi: 10.1042/BST20130204 PubMedCrossRefGoogle Scholar
  67. Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A, Nakagawa T, Kanaoka MM, Sasaki N, Nakano A, Berger F, Higashiyama T (2011) Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr Biol 21:497–502. doi: 10.1016/j.cub.2011.02.013 PubMedCrossRefGoogle Scholar
  68. Hamamura Y, Nagahara S, Higashiyama T (2012) Double fertilization on the move. Curr Opin Plant Biol 15:70–77. doi: 10.1016/j.pbi.2011.11.001 PubMedCrossRefGoogle Scholar
  69. Hanisch FA (2001) O-glycosylation of the mucin type. Biol Chem 382:143–149. doi: 10.1515/bc.2001.022 PubMedCrossRefGoogle Scholar
  70. Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021. doi: 10.1093/nar/gkm812 PubMedCrossRefGoogle Scholar
  71. Hepler PK, Winship LJ (2015) The pollen tube clear zone: clues to the mechanism of polarized growth. J Integr Plant Biol 57:79–92. doi: 10.1111/jipb.12315 PubMedCrossRefGoogle Scholar
  72. Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. In: Giles KL, Prakash J (eds) Pollen: cytology and development. Academic Press, London, pp 1–78Google Scholar
  73. Heslop-Harrison J, Heslop-Harrison Y (1986) Pollen-tube chemotropism: fact or delusion? In: Cresti M, Romano D (eds) In biology of reproduction and cell motility in plants and animals. University of Sienna Press, Siena, pp 169–174Google Scholar
  74. Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Moscatelli A (1988) Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. J Cell Sci 91:49–60Google Scholar
  75. Higashiyama T (2010) Peptide signaling in pollen–pistil interactions. Plant Cell Physiol 51:177–189. doi: 10.1093/pcp/pcq008 PubMedCrossRefGoogle Scholar
  76. Higashiyama T (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 2015:393–413CrossRefGoogle Scholar
  77. Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1998) Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–2032PubMedPubMedCentralCrossRefGoogle Scholar
  78. Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010PubMedPubMedCentralCrossRefGoogle Scholar
  79. Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884. doi: 10.1002/pmic.200402011 PubMedCrossRefGoogle Scholar
  80. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652. doi: 10.1104/pp.103.020925 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. doi: 10.1186/gb-2004-5-11-r85 PubMedPubMedCentralGoogle Scholar
  82. Honys D, Combe JP, Twell D, Čapková V (2000) The translationally repressed pollen-specific ntp303 mRNA is stored in non-polysomal mRNPs during pollen maturation. Sex Plant Reprod 13:135–144CrossRefGoogle Scholar
  83. Honys D, Reňák D, Twell D (2006) Male gametyphyte development and function. In: da Silva JT (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol 1. Global Science Books, London, pp 76–87Google Scholar
  84. Honys D, Reňák D, Feciková J, Jedelský PL, Nebesářová J, Dobrev P, Čapková V (2009) Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J Proteome Res 8:2015–2031. doi: 10.1021/pr8009897 PubMedCrossRefGoogle Scholar
  85. Horade M, Kanaoka M, Kuzuya M, Higashiyama T, Kaji N (2013) A microfluidic device for quantitative analysis of chemoattraction in plants. RSC Adv 3:22301–22307CrossRefGoogle Scholar
  86. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747. doi: 10.1155/2008/420747 CrossRefGoogle Scholar
  87. Hsieh K, Huang AH (2005) Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum. Plant J 43:889–899. doi: 10.1111/j.1365-313X.2005.02502.x PubMedCrossRefGoogle Scholar
  88. Huang MD, Hsing YI, Huang AH (2011) Transcriptomes of the anther sporophyte: availability and uses. Plant Cell Physiol 52:1459–1466. doi: 10.1093/pcp/pcr088 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159PubMedCrossRefGoogle Scholar
  90. Hulskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64. doi: 10.1105/tpc.7.1.57 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijon M, Egelhofer V, Weckwerth W (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 13:295–310. doi: 10.1074/mcp.M113.028100 PubMedCrossRefGoogle Scholar
  92. Jia Q-S, Zhu J, Xu XF, Lou Y, Zhang ZL, Zhang ZP, Yang ZN (2014) Arabidopsis AT-hook protein TEK positively regulates the expression of arabinogalactan proteins for Nexine formation. Mol Plant 8:251–260PubMedCrossRefGoogle Scholar
  93. Kanaoka MM, Kawano N, Matsubara Y, Susaki D, Okuda S, Sasaki N, Higashiyama T (2011) Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor. Ann Bot 108:739–747. doi: 10.1093/aob/mcr111 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992. doi: 10.1105/tpc.105.034603 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kasahara RD, Maruyama D, Hamamura Y, Sakakibara T, Twell D, Higashiyama T (2012) Fertilization recovery after defective sperm cell release in Arabidopsis. Curr Biol 22:1084–1089. doi: 10.1016/j.cub.2012.03.069 PubMedCrossRefGoogle Scholar
  96. Kessler SA, Grossniklaus U (2011) She’s the boss: signaling in pollen tube reception. Curr Opin Plant Biol 14:622–627. doi: 10.1016/j.pbi.2011.07.012 PubMedCrossRefGoogle Scholar
  97. Klahre U, Becker C, Schmitt AC, Kost B (2006) Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J 46:1018–1031. doi: 10.1111/j.1365-313X.2006.02757.x PubMedCrossRefGoogle Scholar
  98. Knorre DG, Kudryashova NV, Godovikova TS (2009) Chemical and functional aspects of posttranslational modification of proteins. Acta Nat 1:29–51Google Scholar
  99. Kovar DR, Drobak BK, Staiger CJ (2000) Maize profilin isoforms are functionally distinct. Plant Cell 12:583–598PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kultz D (1998) Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. J Mol Evol 46:571–588. doi: 10.1007/pl00006338 PubMedCrossRefGoogle Scholar
  101. Lalanne E, Honys D, Johnson A, Borner GH, Lilley KS, Dupree P, Grossniklaus U, Twell D (2004) SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240. doi: 10.1105/tpc.014407 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lamport DT, Varnai P (2013) Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. N Phytol 197:58–64. doi: 10.1111/nph.12005 CrossRefGoogle Scholar
  103. Lamport DT, Kieliszewski MJ, Chen Y, Cannon MC (2011) Role of the extensin superfamily in primary cell wall architecture. Plant Physiol 156:11–19. doi: 10.1104/pp.110.169011 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiferum. Protoplasma 167:215–230. doi: 10.1007/bf01403385 CrossRefGoogle Scholar
  105. Lee TY, Bretana NA, Lu CT (2011) PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. BMC Bioinform 12:13. doi: 10.1186/1471-2105-12-261 CrossRefGoogle Scholar
  106. Lee JS, Hnilova M, Maes M, Lin YC, Putarjunan A, Han SK, Avila J, Torii KU (2015) Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature 522:439–443. doi: 10.1038/nature14561 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lenartowska M, Michalska A (2008) Actin filament organization and polarity in pollen tubes revealed by myosin II subfragment 1 decoration. Planta 228:891–896. doi: 10.1007/s00425-008-0802-5 PubMedCrossRefGoogle Scholar
  108. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48. doi: 10.1023/a:1006012005654 PubMedCrossRefGoogle Scholar
  109. Leydon AR, Beale KM, Woroniecka K, Castner E, Chen J, Horgan C, Palanivelu R, Johnson MA (2013) Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr Biol 23:1209–1214. doi: 10.1016/j.cub.2013.05.021 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Li HJ, Xue Y, Jia DJ, Wang T, Hi DQ, Liu J, Cui F, Xie Q, Ye D, Yang WC (2011) POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23:3288–3302. doi: 10.1105/tpc.111.088914 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, Wang JG, Kombrink A, McCormick S, Zhang XS, Zhang Y (2013) Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J 74:486–497. doi: 10.1111/tpj.12139 PubMedCrossRefGoogle Scholar
  112. Li Y, Ye Z, Nie Y, Zhang J, Wang G-L, Wang Z (2015) Comparative phosphoproteome analysis of Magnaporthe oryzae-responsive proteins in susceptible and resistant rice cultivars. J Proteomics 115:66–80. doi: 10.1016/j.jprot.2014.12.007 PubMedCrossRefGoogle Scholar
  113. Lim ES, Gumpil JS (1984) The flowering, pollination and hybridization of groundnuts (Arachis hypogaea L.). Pertanika 7:61–66Google Scholar
  114. Lindner H, Kessler SA, Muller LM, Shimosato-Asano H, Boisson-Dernier A, Grossniklaus U (2015) TURAN and EVAN mediate pollen tube reception in Arabidopsis synergids through protein glycosylation. PLoS Biol. doi: 10.1371/journal.pbio.1002139 Google Scholar
  115. Ling Y, Chen T, Jing Y, Fan L, Wan Y, Lin J (2013) γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. Planta 238:831–843. doi: 10.1007/s00425-013-1938-5 PubMedCrossRefGoogle Scholar
  116. Liu J, Zhong S, Guo X, Hao L, Wei X, Huang Q, Hou Y, Shi J, Wang C, Gu H, Qu LJ (2013) Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male–female attraction in Arabidopsis. Curr Biol 23:993–998. doi: 10.1016/j.cub.2013.04.043 PubMedCrossRefGoogle Scholar
  117. Lora J, Herrero M, Hormaza JI (2009) The coexistence of bicellular and tricellular pollen in Annona cherimola (Annonaceae): implications for pollen evolution. Am J Bot 96:802–808. doi: 10.3732/ajb.0800167 PubMedCrossRefGoogle Scholar
  118. Lou Y, Xu XF, Zhu J, Gu JN, Blackmore S, Yang ZN (2014) The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nat Commun 5:3855. doi: 10.1038/ncomms4855 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Lovy-Wheeler A, Kunkel JG, Allwood EG, Hussey PJ, Hepler PK (2006) Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell 18:2182–2193. doi: 10.1105/tpc.106.044867 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung A, Sze H (2011) Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23:81–93. doi: 10.1105/tpc.110.080499 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Lu P, Chai M, Yang J, Ning G, Wang G, Ma H (2014) The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis. Plant Physiol 164:1893–1904. doi: 10.1104/pp.113.233387 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Ma H (2005) Molecular genetic analyses of microsporogenesis and micro grametogenesis in flowering plants. Annu Rev Plant Biol 2005:393–434CrossRefGoogle Scholar
  123. Maheshwari P (1950) An introduction to embryology of angiosperms. McGraw-Hill, New YorkCrossRefGoogle Scholar
  124. Malpighi M (1675, 1679) Die Anatomie der Pflanzen. I und II Theil. London 1675 und 1679. Engelmann, Leipzig, 1901Google Scholar
  125. Márton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576. doi: 10.1126/science.1104954 PubMedCrossRefGoogle Scholar
  126. Márton ML, Fastner A, Uebler S, Dresselhaus T (2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol 22:1194–1198. doi: 10.1016/j.cub.2012.04.061 PubMedCrossRefGoogle Scholar
  127. Maruyama D, Hamamura Y, Takeuchi H, Susaki D, Nishimaki M, Kurihara D, Kasahara RD, Higashiyama T (2013) Independent control by each female gamete prevents the attraction of multiple pollen tubes. Dev Cell 25:317–323. doi: 10.1016/j.devcel.2013.03.013 PubMedCrossRefGoogle Scholar
  128. Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314. doi: 10.1105/tpc.5.10.1303 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Mascarenhas JP, Machlis L (1962) The hormonal control of the directional growth of pollen tubes. Vitam Horm 20:347–372CrossRefGoogle Scholar
  130. Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P, Nühse T, Grossniklaus U (2012) Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J 72:89–101. doi: 10.1111/j.1365-313X.2012.05061.x PubMedCrossRefGoogle Scholar
  131. McCue AD, Cresti M, Feijó JA, Slotkin RK (2011) Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. J Exp Bot 62:1621–1631. doi: 10.1093/jxb/err032 PubMedCrossRefGoogle Scholar
  132. Meyer LJ, Gao J, Xu D, Thelen JJ (2012) Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. Plant Physiol 159:517–528. doi: 10.1104/pp.111.191700 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Michard E, Dias P, Feijó JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod 21:169–181. doi: 10.1007/s00497-008-0076-x CrossRefGoogle Scholar
  134. Michard E, Alves F, Feijó JA (2009) The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Intern J Dev Biol 53:1609–1622. doi: 10.1387/ijdb.072296em CrossRefGoogle Scholar
  135. Mogami N, Miyamoto M, Onozuka M, Nakamura N (2006) Comparison of callose plug structure between dicotyledon and monocotyledon pollen germinated in vitro. Grana 45:249–256. doi: 10.1080/00173130600726687 CrossRefGoogle Scholar
  136. Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2005) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat cell biol 8:64–71PubMedCrossRefGoogle Scholar
  137. Mulcahy DL (1979) The rise of the angiosperms: a genecological factor. Science 206:20–23. doi: 10.1126/science.206.4414.20 PubMedCrossRefGoogle Scholar
  138. Mulcahy GB, Mulcahy DL (1988) The effect of supplemented media on the growth in vitro of binucleate and trinucleate pollen. Plant Sci 55:213–216CrossRefGoogle Scholar
  139. Mulcahy DL, Sari Gorla M, Mulcahy GB (1996) Pollen selection: past, present and future. Sex Plant Reprod 9:353–356CrossRefGoogle Scholar
  140. Nawaschin S (1898) Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. Bulletin de l’Académie Impériale des Sciences 9:377–382Google Scholar
  141. Nguema-Ona E, Coimbra S, Vicre-Gibouin M, Mollet J-C, Driouich A (2012) Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Ann Bot 110:383–404. doi: 10.1093/aob/mcs143 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266. doi: 10.1016/j.bbrc.2005.09.185 PubMedCrossRefGoogle Scholar
  143. Oh SA, Pal MD, Park SK, Johnson JA, Twell D (2010) The tobacco MAP215/Dis1-family protein TMBP200 is required for the functional organization of microtubule arrays during male germline establishment. J Exp Bot 61:969–981. doi: 10.1093/jxb/erp367 PubMedCrossRefGoogle Scholar
  144. Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361. doi: 10.1038/nature07882 PubMedCrossRefGoogle Scholar
  145. Onelli E, Idilli AI, Moscatelli A (2015) Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. Front Plant Sci. doi: 10.3389/fpls.2015.00051 PubMedPubMedCentralGoogle Scholar
  146. Pacini E (1990) Tapetum and microspore function. In: Blackmore S, Knox RB (eds) Microspores: evolution and ontogeny. Academic Press, London, pp 213–237CrossRefGoogle Scholar
  147. Pacini E (1996) Types and meaning of pollen carbohydrate reserves. Sex Plant Reprod 9:362–366CrossRefGoogle Scholar
  148. Pacini E, Guarnieri M, Nepi M (2006) Pollen carbohydrates and water content during development, presentation, and dispersal: a short review. Protoplasma 228:73–77. doi: 10.1007/s00709-006-0169-z PubMedCrossRefGoogle Scholar
  149. Palanivelu R, Preuss D (2000) Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol 10:517–524. doi: 10.1016/s0962-8924(00)01849-3 PubMedCrossRefGoogle Scholar
  150. Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7. doi: 10.1186/1471-2229-6-7 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59PubMedCrossRefGoogle Scholar
  152. Park SK, Howden R, Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125:3789–3799PubMedGoogle Scholar
  153. Pereira AM, Masiero S, Nobre MS, Costa ML, Solis MT, Testillano PS, Sprunck S, Coimbra S (2014) Differential expression patterns of arabinogalactan proteins in Arabidopsis thaliana reproductive tissues. J Exp Bot 65:5459–5471PubMedPubMedCentralCrossRefGoogle Scholar
  154. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi: 10.1038/nmeth.1701 PubMedCrossRefGoogle Scholar
  155. Phan HA, Iacuone S, Li SF, Parish RW (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23:2209–2224. doi: 10.1105/tpc.110.082651 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Pierloni A, Martelli PL, Casadio R (2008) PredGPI: a GPI-anchor predictor. BMC Bioinform 9:392. doi: 10.1186/1471-2105-9-392 CrossRefGoogle Scholar
  157. Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173. doi: 10.1006/dbio.1996.0060 PubMedCrossRefGoogle Scholar
  158. Prado N, de Dios Alche J, Casado-Vela J, Mas S, Villalba M, Rodriguez R, Batanero E (2014) Nanovesicles are secreted during pollen germination and pollen tube growth: a possible role in fertilization. Mol Plant 7:573–577. doi: 10.1093/mp/sst153 PubMedCrossRefGoogle Scholar
  159. Puc M (2003) Characterisation of pollen allergens. Ann Agric Environ Med 10:143–149PubMedGoogle Scholar
  160. Purkyně JE (1830) De cellulis antherarum fibrosis nec non de granorum pollinarium formis: commentatio phytomica. Sumtibus J. D. Gruesonii, Breslau, VratislaviaeGoogle Scholar
  161. Qin Y, Yang ZBA (2011) Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 22:816–824. doi: 10.1016/j.semcdb.2011.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. doi: 10.1371/journal.pgen.1000621 Google Scholar
  163. Qin Y, Wysocki RJ, Somogyi A, Feinstein Y, Franco JY, Tsukamoto T, Dunatunga D, Levy C, Smith S, Simpson R, Gang D, Johnson MA, Palanivelu R (2011) Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils. Plant J 68:800–815. doi: 10.1111/j.1365-313X.2011.04729.x PubMedPubMedCentralCrossRefGoogle Scholar
  164. Qin T, Liu X, Li J, Sun J, Song L, Mao T (2014) Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell 26:325–339. doi: 10.1105/tpc.113.119768 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182. doi: 10.1016/j.phytochem.2014.05.002 PubMedCrossRefGoogle Scholar
  166. Ray SM, Park SS, Ray A (1997) Pollen tube guidance by the female gametophyte. Development 124:2489–2498PubMedGoogle Scholar
  167. Ren HY, Xiang Y (2007) The function of actin-binding proteins in pollen tube growth. Protoplasma 230:171–182. doi: 10.1007/s00709-006-0231-x PubMedCrossRefGoogle Scholar
  168. Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M (2007) Microtubule- and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Plant Cell Physiol 48:345–361. doi: 10.1093/pcp/pcm001 PubMedCrossRefGoogle Scholar
  169. Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436PubMedCrossRefGoogle Scholar
  170. Russell SD, Jones DS (2015) The male germline of angiosperms: repertoire of an inconspicuous but important cell lineage. Front Plant Sci 6:173. doi: 10.3389/fpls.2015.00173 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Russell SD, Strout GW, Stramski AK, Mislan TW, Thompson RA, Schoemann LM (1996) Development polarization and morphogenesis of the generative and sperm cells of Plumbago zeylanica. 1. Descriptive cytology and three-dimensional organization. Am J Bot 83:1435–1453CrossRefGoogle Scholar
  172. Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28:73–89. doi: 10.1007/s00497-015-0261-7 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Šamaj J, Muller J, Beck M, Böhm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600. doi: 10.1016/j.tplants.2006.10.002 PubMedCrossRefGoogle Scholar
  174. Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195. doi: 10.1111/tpj.12613 PubMedCrossRefGoogle Scholar
  175. Sanders LC, Lord EM (1989) Directed movement of latex particles in the gynoecia of three species of flowering plants. Science 243:1606–1608PubMedCrossRefGoogle Scholar
  176. Sanders LC, Lord EM (1992) A dynamic role for the stylar matrix during pollen tube extension. Int Rev Cytol 140:297–318CrossRefGoogle Scholar
  177. Schrauwen JA, de Groot PF, van Herpen MM, van der Lee T, Reynen WH, Weterings KA, Wullems GJ (1990) Stage-related expression of mRNAs during pollen development in lily and tobacco. Planta 182:298–304. doi: 10.1007/BF00197125 PubMedCrossRefGoogle Scholar
  178. Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. Plant Cell 11:377–392PubMedPubMedCentralGoogle Scholar
  179. Schwemmie J (1968) Selective fertilization in Oenothera. Adv Genet 14:225–324CrossRefGoogle Scholar
  180. Scotland RW, Worltey AH (2003) How many species of seed plants are there? Taxon 52:101–104CrossRefGoogle Scholar
  181. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60. doi: 10.1105/tpc.017012 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Sheoran IS, Sproule KA, Olson DJH, Ross ARS, Sawhney VK (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex Plant Reprod 19:185–196. doi: 10.1007/s00497-006-0035-3 CrossRefGoogle Scholar
  183. Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Sci 176:99–104. doi: 10.1016/j.plantsci.2008.09.015 CrossRefGoogle Scholar
  184. Shi YY, Tao WJ, Liang SP, Lu YT, Zhang L (2009) Analysis of the tip-to-base gradient of CaM in pollen tube pulsant growth using in vivo CaM-GFP system. Plant Cell Rep 28:1253–1264. doi: 10.1007/s00299-009-0725-z PubMedCrossRefGoogle Scholar
  185. Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–4518PubMedGoogle Scholar
  186. Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472. doi: 10.1016/j.cell.2008.12.038 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61:1969–1986. doi: 10.1093/jxb/erq012 PubMedCrossRefGoogle Scholar
  188. Stepper J, Shastri S, Loo TS, Preston JC, Novak P, Man P, Moore CH, Havlicek V, Patchett ML, Norris GE (2011) Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett 585:645–650. doi: 10.1016/j.febslet.2011.01.023 PubMedCrossRefGoogle Scholar
  189. Strasburger E (1884) Neue Untersuchungen uber den Befruchtungsvorgang bei den Phanerogamen als Grundlage fur eine Theorie der Zeugung. Gustav Fischer, JenaCrossRefGoogle Scholar
  190. Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544. doi: 10.1105/tpc.108.060277 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Takeuchi H, Higashiyama T (2011) Attraction of tip-growing pollen tubes by the female gametophyte. Curr Opin Plant Biol 14:614–621. doi: 10.1016/j.pbi.2011.07.010 PubMedCrossRefGoogle Scholar
  192. Takeuchi H, Higashiyama T (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10:e1001449. doi: 10.1371/journal.pbio.1001449 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Terasaka O, Niitsu T (1987) Unequal cell division and chromatin differentiation in pollen grain cells I. Centrifugal, cold and caffeine treatment. Bot Mag (Tokyo) 100:205–216CrossRefGoogle Scholar
  194. Ting JT, Wu SS, Ratnayake C, Huang AH (1998) Constituents of the tapetosomes and elaioplasts in Brassica campestris tapetum and their degradation and retention during microsporogenesis. Plant J 16:541–551PubMedCrossRefGoogle Scholar
  195. Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R (2010) A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J 62:571–588. doi: 10.1111/j.1365-313X.2010.04177.x PubMedCrossRefGoogle Scholar
  196. Tupý J (1982) Alterations in polyadenylated RNA during pollen maturation and germination. Biol Plant 24:331–340CrossRefGoogle Scholar
  197. Tupý J, Říhová L, Žárský V (1991) Production of fertile tobacco pollen from microspores in suspension culture and its storage for in situ pollination. Sex Plant Reprod 4:284–287CrossRefGoogle Scholar
  198. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160. doi: 10.1007/s00497-010-0157-5 PubMedCrossRefGoogle Scholar
  199. Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711–714. doi: 10.1038/ncb844 PubMedPubMedCentralCrossRefGoogle Scholar
  200. Uebler S, Dresselhaus T (2014) Identifying plant cell-surface receptors: combining ‘classical’ techniques with novel methods. Biochem Soc Trans 42:395–400. doi: 10.1042/bst20130251 PubMedCrossRefGoogle Scholar
  201. Ueda T, Iwashita H, Hashimoto Y, Imoto T (1996) Stabilization of lysozyme by introducing N-glycosylation signal sequence. J Biochem 119:157–161PubMedCrossRefGoogle Scholar
  202. van Bentem SD, Anrather D, Dohnal I, Roitinger E, Csaszar E, Joore J, Buijnink J, Carreri A, Forzani C, Lorkovic ZJ, Barta A, Lecourieux D, Verhounig A, Jonak C, Hirt H (2008) Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J Proteome Res 7:2458–2470. doi: 10.1021/pr8000173 CrossRefGoogle Scholar
  203. Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12:2534–2545PubMedPubMedCentralCrossRefGoogle Scholar
  204. Vogler F, Schmalzl C, Englhart M, Bircheneder M, Sprunck S (2014) Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27:153–167. doi: 10.1007/s00497-014-0247-x PubMedCrossRefGoogle Scholar
  205. Vogler F, Konrad SSA, Sprunck S (2015) Knockin’ on pollen’s door: live cell imaging of early polarization events in germinating Arabidopsis pollen. Front Plant Sci. doi: 10.3389/fpls.2015.00246 PubMedPubMedCentralGoogle Scholar
  206. Völz R, Heydlauff J, Ripper D, von Lyncker L, Groß-Hardt R (2013) Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. Dev Cell 25:310–316. doi: 10.1016/j.devcel.2013.04.001 PubMedCrossRefGoogle Scholar
  207. von Besser K, Frank AC, Johnson MA, Preuss D (2006) Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–4769. doi: 10.1242/dev.02683 CrossRefGoogle Scholar
  208. Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z, Wu W-H (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211. doi: 10.1104/pp.108.126375 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11:338. doi: 10.1186/1471-2164-11-338 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Williams JH (2009) Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. Am J Bot 96:144–165. doi: 10.3732/ajb.0800070 PubMedCrossRefGoogle Scholar
  211. Williams JH, Taylor ML, O’Meara BC (2014) Repeated evolution of tricellular (and bicellular) pollen. Am J Bot 101:559–571. doi: 10.3732/ajb.1300423 PubMedCrossRefGoogle Scholar
  212. Wilsen KL, Lovy-Wheeler A, Voigt B, Menzel D, Kunkel JG, Hepler PK (2006) Imaging the actin cytoskeleton in growing pollen tubes. Sex Plant Reprod 19:51–62. doi: 10.1007/s00497-006-0021-9 CrossRefGoogle Scholar
  213. Wilson C, Voronin V, Touraev A, Vicente O, Heberle Bors E (1997) A developmentally regulated MAP kinase activated by hydration in tobacco pollen. Plant Cell 9:2093–2100PubMedPubMedCentralCrossRefGoogle Scholar
  214. Wolschin F, Weckwerth W (2005) Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites. Plant Methods 1(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  215. Woollard AAD, Moore I (2008) The functions of Rab GTPases in plant membrane traffic. Curr Opin Plant Biol 11:610–619. doi: 10.1016/j.pbi.2008.09.010 PubMedCrossRefGoogle Scholar
  216. Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771. doi: 10.1105/tpc.4.7.759 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Wu H, de Graaf BHJ, Mariani C, Cheung AY (2001) Hydroxyproline-rich glycoproteins in plant reproductive tissues: structure, functions and regulation. Cell Mol Life Sci 58:1418–1429PubMedCrossRefGoogle Scholar
  218. Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16:S133–S141. doi: 10.1105/tpc.018192 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Palanivelu R, Sun MX (2014) Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. J Exp Bot 65:3235–3248. doi: 10.1093/jxb/eru171 PubMedPubMedCentralCrossRefGoogle Scholar
  220. Zaki MAM, Dickinson H (1991) Microspore-derived embryos in Brassica: the significance of division asymmetry in pollen mitosis I to embryogenic development. Sex Plant Reprod 4:48–55CrossRefGoogle Scholar
  221. Zhang Y, McCormick S (2010) The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. Sex Plant Reprod 23:87–93. doi: 10.1007/s00497-009-0118-z PubMedCrossRefGoogle Scholar
  222. Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538. doi: 10.1111/j.1365-313X.2007.03254.x PubMedCrossRefGoogle Scholar
  223. Zhang Y, He J, McCormick S (2009) Two Arabidopsis AGC kinases are critical for the polarized growth of pollen tubes. Plant J 58:474–484. doi: 10.1111/j.1365-313X.2009.03792.x PubMedCrossRefGoogle Scholar
  224. Zhao HP, Ren HY (2006) Rop1Ps promote actin cytoskeleton dynamics and control the tip growth of lily pollen tube. Sex Plant Reprod 19:83–91. doi: 10.1007/s00497-006-0024-6 CrossRefGoogle Scholar
  225. Zhao XY, Wang Q, Li S, Ge FR, Zhou LZ, McCormick S, Zhang Y (2013) The juxtamembrane and carboxy-terminal domains of Arabidopsis PRK2 are critical for ROP-induced growth in pollen tubes. J Exp Bot 64(18):5599–5610. doi: 10.1093/jxb/ert323 PubMedPubMedCentralCrossRefGoogle Scholar
  226. Zheng ZL, Yang ZB (2000) The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol 44:1–9. doi: 10.1023/a:1006402628948 PubMedCrossRefGoogle Scholar
  227. Zhu L, Zhang Y, Kang E, Xu Q, Wang M, Rui Y, Liu B, Yuan M, Fu Y (2013) MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. Plant Cell 25:851–867. doi: 10.1105/tpc.113.110528 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Experimental Botany ASCR, v.v.i.Prague 6Czech Republic
  2. 2.Department of Experimental Plant Biology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic

Personalised recommendations