Plant Reproduction

, Volume 29, Issue 1–2, pp 3–20 | Cite as

Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth

  • Ingo HeilmannEmail author
  • Till IschebeckEmail author
Part of the following topical collections:
  1. Pollen development and stress response

Key message

Phosphoinositides in pollen.


In angiosperms, sexual reproduction is a series of complex biological events that facilitate the distribution of male generative cells for double fertilization. Angiosperms have no motile gametes, and the distribution units of generative cells are pollen grains, passively mobile desiccated structures, capable of delivering genetic material to compatible flowers over long distances and in an adverse environment. The development of pollen (male gametogenesis) and the formation of a pollen tube after a pollen grain has reached a compatible flower (pollen tube growth) are important aspects of plant developmental biology. In recent years, a wealth of information has been gathered about the molecular control of cell polarity, membrane trafficking and cytoskeletal dynamics underlying these developmental processes. In particular, it has been found that regulatory membrane phospholipids, such as phosphoinositides (PIs), are critical regulatory players, controlling key steps of trafficking and polarization. Characteristic features of PIs are the inositol phosphate headgroups of the lipids, which protrude from the cytosolic surfaces of membranes, enabling specific binding and recruitment of numerous protein partners containing specific PI-binding domains. Such recruitment is globally an early event in polarization processes of eukaryotic cells and also of key importance to pollen development and tube growth. Additionally, PIs serve as precursors of other signaling factors with importance to male gametogenesis. This review highlights the recent advances about the roles of PIs in pollen development and pollen function.


Phosphoinositides Polar tip growth Pollen tube Phosphatidic acid Lipid signaling Pollen development 


Author contribution statement

I. H. and T. I. both wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.


  1. Audhya A, Emr SD (2002) Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell 2:593–605PubMedCrossRefGoogle Scholar
  2. Bak G et al (2013) Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. Plant Cell 25:2202–2216. doi: 10.1105/tpc.113.110411 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137. doi: 10.1152/physrev.00028.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bankaitis VA, Aitken JR, Cleves AE, Dowhan W (1990) An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347:561–562. doi: 10.1038/347561a0 PubMedCrossRefGoogle Scholar
  5. Bankaitis VA, Mousley CJ, Schaaf G (2010) The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci 35:150–160. doi: 10.1016/j.tibs.2009.10.008 PubMedCrossRefGoogle Scholar
  6. Berger F, Twell D (2011) Germline specification and function in plants. Annu Rev Plant Biol 62:461–484. doi: 10.1146/annurev-arplant-042110-103824 PubMedCrossRefGoogle Scholar
  7. Bleckmann A, Alter S, Dresselhaus T (2014) The beginning of a seed: regulatory mechanisms of double fertilization. Front Plant Sci 5:452. doi: 10.3389/fpls.2014.00452 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478. doi: 10.1093/jxb/ern355 PubMedCrossRefGoogle Scholar
  9. Canagarajah BJ, Ren X, Bonifacino JS, Hurley JH (2013) The clathrin adaptor complexes as a paradigm for membrane-associated allostery. Protein Sci 22:517–529. doi: 10.1002/pro.2235 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chang CL et al (2013) Feedback regulation of receptor-induced Ca2 + signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep 5:813–825. doi: 10.1016/j.celrep.2013.09.038 PubMedCrossRefGoogle Scholar
  11. Chaturvedi P, Ischebeck T, Egelhofer V, Lichtscheidl I, Weckwerth W (2013) Cell-specific analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides evidence for developmental priming. J Proteome Res. doi: 10.1021/pr400197p PubMedGoogle Scholar
  12. Colon-Gonzalez F, Kazanietz MG (2006) C1 domains exposed: from diacylglycerol binding to protein-protein interactions. Biochim et Biophys Acta 1761:827–837. doi: 10.1016/j.bbalip.2006.05.001 CrossRefGoogle Scholar
  13. Cruz-Garcia F, Nathan Hancock C, Kim D, McClure B (2005) Stylar glycoproteins bind to S-RNase in vitro. Plant J 42:295–304. doi: 10.1111/j.1365-313X.2005.02375.x PubMedCrossRefGoogle Scholar
  14. Daher FB, Braybrook SA (2015) How to let go: pectin and plant cell adhesion. Front Plant Sci 6:523. doi: 10.3389/fpls.2015.00523 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Delage E, Ruelland E, Guillas I, Zachowski A, Puyaubert J (2012) Arabidopsis type-III phosphatidylinositol 4-kinases beta1 and beta2 are upstream of the phospholipase C pathway triggered by cold exposure. Plant Cell Physiol 53:565–576. doi: 10.1093/pcp/pcs011 PubMedCrossRefGoogle Scholar
  16. Delage E, Puyaubert J, Zachowski A, Ruelland E (2013) Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms. Prog Lipid Res 52:1–14. doi: 10.1016/j.plipres.2012.08.003 PubMedCrossRefGoogle Scholar
  17. Derksen J, Rutten T, Lichtscheidl IK, de Win AHN, Pierson ES, Rongen G (1995) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188:267–276. doi: 10.1007/bf01280379 CrossRefGoogle Scholar
  18. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H + -ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730. doi: 10.1105/tpc.105.037978 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dong W, Lv H, Xia G, Wang M (2012) Does diacylglycerol serve as a signaling molecule in plants? Plant Signal Behav 7:472–475. doi: 10.4161/psb.19644 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S (2006) Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 18:1438–1453. doi: 10.1105/tpc.106.041582 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fan L et al (2013) Dynamic analysis of Arabidopsis AP2 sigma subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140:3826–3837. doi: 10.1242/dev.095711 PubMedCrossRefGoogle Scholar
  22. Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460. doi: 10.1007/s004250050421 CrossRefGoogle Scholar
  23. Franchi GG, Piotto B, Nepi M, Baskin CC, Baskin JM, Pacini E (2011) Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J Exp Bot 62:5267–5281. doi: 10.1093/jxb/err154 PubMedCrossRefGoogle Scholar
  24. Gao YB, Wang CL, Wu JY, Zhou HS, Jiang XT, Wu J, Zhang SL (2014) Low temperature inhibits pollen tube growth by disruption of both tip-localized reactive oxygen species and endocytosis in Pyrus bretschneideri Rehd. Plant Physiol Biochem 74:255–262. doi: 10.1016/j.plaphy.2013.11.018 PubMedCrossRefGoogle Scholar
  25. Ghosh R et al (2015) Sec14-nodulin proteins and the patterning of phosphoinositide landmarks for developmental control of membrane morphogenesis. Mol Biol Cell 26:1764–1781. doi: 10.1091/mbc.E14-10-1475 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Goldraij A et al (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439:805–810. doi: 10.1038/nature04491 PubMedCrossRefGoogle Scholar
  27. Gu F, Nielsen E (2013) Targeting and regulation of cell wall synthesis during tip growth in plants. J Integr Plant Biol 55:835–846. doi: 10.1111/jipb.12077 PubMedCrossRefGoogle Scholar
  28. Gu Y, Vernoud V, Fu Y, Yang Z (2003) ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101. doi: 10.1093/jxb/erg035 PubMedCrossRefGoogle Scholar
  29. Gupta R, Ting JT, Sokolov LN, Johnson SA, Luan S (2002) A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 14:2495–2507PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gutkowska M, Wnuk M, Nowakowska J, Lichocka M, Stronkowski MM, Swiezewska E (2015) Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis. J Exp Bot 66:213–224. doi: 10.1093/jxb/eru412 PubMedCrossRefGoogle Scholar
  31. Hammond GR, Balla T (2015) Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim et Biophys Acta 1851:746–758. doi: 10.1016/j.bbalip.2015.02.013 CrossRefGoogle Scholar
  32. Hancock CN, Kent L, McClure BA (2005) The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. Plant J 43:716–723. doi: 10.1111/j.1365-313X.2005.02490.x PubMedCrossRefGoogle Scholar
  33. Heilmann M, Heilmann I (2015) Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim et Biophys Acta 1851:759–769. doi: 10.1016/j.bbalip.2014.09.018 CrossRefGoogle Scholar
  34. Heilmann II, Perera IY, Gross W, Boss WF (1999) Changes in phosphoinositide metabolism with days in culture affect signal transduction pathways in galdieria sulphuraria. Plant Physiol 119:1331–1340PubMedPubMedCentralCrossRefGoogle Scholar
  35. Heilmann I, Perera IY, Gross W, Boss WF (2001) Plasma membrane phosphatidylinositol 4,5-bisphosphate levels decrease with time in culture. Plant Physiol 126:1507–1518PubMedPubMedCentralCrossRefGoogle Scholar
  36. Heldwein EE, Macia E, Wang J, Yin HL, Kirchhausen T, Harrison SC (2004) Crystal structure of the clathrin adaptor protein 1 core. Proc Natl Acad Sci USA 101:14108–14113. doi: 10.1073/pnas.0406102101 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Helling D, Possart A, Cottier S, Klahre U, Kost B (2006) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–3534. doi: 10.1105/tpc.106.047373 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hepler PK, Rounds CM, Winship LJ (2013) Control of cell wall extensibility during pollen tube growth. Mol Plant 6:998–1017. doi: 10.1093/mp/sst103 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hicks GR, Rojo E, Hong S, Carter DG, Raikhel NV (2004) Geminating pollen has tubular vacuoles, displays highly dynamic vacuole biogenesis, and requires VACUOLESS1 for proper function. Plant Physiol 134:1227–1239. doi: 10.1104/pp.103.037382 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413. doi: 10.1146/annurev-arplant-043014-115635 PubMedCrossRefGoogle Scholar
  41. Hirano T, Munnik T, Sato MH (2015) Phosphatidylinositol 3-phosphate 5-kinase, FAB1/PIKfyve mediates endosome maturation to establish endosome-cortical microtubule interaction in Arabidopsis. Plant Physiol. doi: 10.1104/pp.15.01368 Google Scholar
  42. Ho CY, Alghamdi TA, Botelho RJ (2012) Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP2. Traffic 13:1–8. doi: 10.1111/j.1600-0854.2011.01246.x PubMedCrossRefGoogle Scholar
  43. Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, Wang X (2009) Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387. doi: 10.1111/j.1365-313X.2009.03788.x PubMedPubMedCentralCrossRefGoogle Scholar
  44. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85. doi: 10.1186/gb-2004-5-11-r85 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Huang J et al (2006) An ankyrin repeat-containing protein, characterized as a ubiquitin ligase, is closely associated with membrane-enclosed organelles and required for pollen germination and pollen tube growth in lily. Plant Physiol 140:1374–1383. doi: 10.1104/pp.105.074922 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Huang WJ, Liu HK, McCormick S, Tang WH (2014) Tomato pistil factor STIG1 promotes in vivo pollen tube growth by binding to phosphatidylinositol 3-phosphate and the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 26:2505–2523. doi: 10.1105/tpc.114.123281 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Idilli AI, Morandini P, Onelli E, Rodighiero S, Caccianiga M, Moscatelli A (2013) Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes. Mol Plant 6:1109–1130. doi: 10.1093/mp/sst099 PubMedCrossRefGoogle Scholar
  48. Im YJ, Davis AJ, Perera IY, Johannes E, Allen NS, Boss WF (2007) The N-terminal membrane occupation and recognition nexus domain of Arabidopsis phosphatidylinositol phosphate kinase 1 regulates enzyme activity. J Biol Chem 282:5443–5452. doi: 10.1074/jbc.M611342200 PubMedCrossRefGoogle Scholar
  49. Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20:3312–3330. doi: 10.1105/tpc.108.059568 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ischebeck T, Seiler S, Heilmann I (2010a) At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma 240:13–31. doi: 10.1007/s00709-009-0093-0 PubMedCrossRefGoogle Scholar
  51. Ischebeck T, Vu LH, Jin X, Stenzel I, Lofke C, Heilmann I (2010b) Functional cooperativity of enzymes of phosphoinositide conversion according to synergistic effects on pectin secretion in tobacco pollen tubes. Mol Plant 3:870–881. doi: 10.1093/mp/ssq031 PubMedCrossRefGoogle Scholar
  52. Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I (2011) Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J 65:453–468. doi: 10.1111/j.1365-313X.2010.04435.x PubMedCrossRefGoogle Scholar
  53. Ischebeck T et al (2013) Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25:4894–4911. doi: 10.1105/tpc.113.116582 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ischebeck T et al (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 13:295–310. doi: 10.1074/mcp.M113.028100 PubMedCrossRefGoogle Scholar
  55. Kale SD et al (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–295. doi: 10.1016/j.cell.2010.06.008 PubMedCrossRefGoogle Scholar
  56. Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b- and PI-4Kbeta1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–329. doi: 10.1111/j.1600-0854.2010.01146.x PubMedCrossRefGoogle Scholar
  57. Kaya H et al (2014) Ca2 + -activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080. doi: 10.1105/tpc.113.120642 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ketelaar T, Galway ME, Mulder BM, Emons AM (2008) Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes. J Microsc 231:265–273. doi: 10.1111/j.1365-2818.2008.02031.x PubMedCrossRefGoogle Scholar
  59. Klahre U, Becker C, Schmitt AC, Kost B (2006) Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J 46:1018–1031. doi: 10.1111/j.1365-313X.2006.02757.x PubMedCrossRefGoogle Scholar
  60. König S, Mosblech A, Heilmann I (2007) Stress-inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB J 21:1958–1967. doi: 10.1096/fj.06-7887com PubMedCrossRefGoogle Scholar
  61. König S, Ischebeck T, Lerche J, Stenzel I, Heilmann I (2008) Salt-stress-induced association of phosphatidylinositol 4,5-bisphosphate with clathrin-coated vesicles in plants. Biochem J 415:387–399. doi: 10.1042/BJ20081306 PubMedCrossRefGoogle Scholar
  62. Kost B (2008) Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18:119–127. doi: 10.1016/j.tcb.2008.01.003 PubMedCrossRefGoogle Scholar
  63. Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401PubMedCrossRefGoogle Scholar
  64. Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330PubMedPubMedCentralCrossRefGoogle Scholar
  65. Krichevsky A, Kozlovsky SV, Tian GW, Chen MH, Zaltsman A, Citovsky V (2007) How pollen tubes grow. Dev Biol 303:405–420. doi: 10.1016/j.ydbio.2006.12.003 PubMedCrossRefGoogle Scholar
  66. Krinke O, Novotna Z, Valentova O, Martinec J (2007a) Inositol trisphosphate receptor in higher plants: is it real? J Exp Bot 58:361–376. doi: 10.1093/jxb/erl220 PubMedCrossRefGoogle Scholar
  67. Krinke O et al (2007b) Phosphatidylinositol 4-kinase activation is an early response to salicylic acid in Arabidopsis suspension cells. Plant Physiol 144:1347–1359. doi: 10.1104/pp.107.100842 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kusano H et al (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20:367–380. doi: 10.1105/tpc.107.056119 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Laha D et al (2015) VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in arabidopsis. Plant Cell 27:1082–1097. doi: 10.1105/tpc.114.135160 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lee CB, Swatek KN, McClure B (2008a) Pollen proteins bind to the C-terminal domain of Nicotiana alata pistil arabinogalactan proteins. J Biol Chem 283:26965–26973. doi: 10.1074/jbc.M804410200 PubMedCrossRefGoogle Scholar
  71. Lee Y, Bak G, Choi Y, Chuang WI, Cho HT, Lee Y (2008b) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–635. doi: 10.1104/pp.108.117341 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lee Y, Kim ES, Choi Y, Hwang I, Staiger CJ, Chung YY, Lee Y (2008c) The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development (vol 147, p. 1886. Plant Physiol 148:1734. doi: 10.1104/pp.104.900276 CrossRefGoogle Scholar
  73. Lee CB, Kim S, McClure B (2009) A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. Plant Physiol 149:791–802. doi: 10.1104/pp.108.127936 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Levin R, Grinstein S, Schlam D (2015) Phosphoinositides in phagocytosis and macropinocytosis. Biochim et Biophys Acta 1851:805–823. doi: 10.1016/j.bbalip.2014.09.005 CrossRefGoogle Scholar
  75. Li J, Henty-Ridilla JL, Huang S, Wang X, Blanchoin L, Staiger CJ (2012) Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24:3742–3754. doi: 10.1105/tpc.112.103945 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li S, Sun T, Ren H (2015) The functions of the cytoskeleton and associated proteins during mitosis and cytokinesis in plant cells. Front Plant Sci 6:282. doi: 10.3389/fpls.2015.00282 PubMedPubMedCentralGoogle Scholar
  77. Lind J, Bönig I, Clarke A, Anderson M (1996) A style-specific 120-kDa glycoprotein enters pollen tubes of Nicotiana alata in vivo. Sex Plant Reprod 9:75–86. doi: 10.1007/bf02153054 CrossRefGoogle Scholar
  78. Liu B, Ho CM, Lee YR (2011) Microtubule reorganization during mitosis and cytokinesis: lessons learned from developing microgametophytes in Arabidopsis thaliana. Front Plant Sci 2:27. doi: 10.3389/fpls.2011.00027 PubMedPubMedCentralGoogle Scholar
  79. Löfke C, Ischebeck T, König S, Freitag S, Heilmann I (2008) Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochem J 413:115–124. doi: 10.1042/BJ20071371 PubMedCrossRefGoogle Scholar
  80. Logothetis DE et al (2015) Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 77:81–104. doi: 10.1146/annurev-physiol-021113-170358 PubMedCrossRefGoogle Scholar
  81. Mähs A, Ischebeck T, Heilig Y, Stenzel I, Hempel F, Seiler S, Heilmann I (2012) The essential phosphoinositide kinase MSS-4 Is required for polar hyphal morphogenesis, localizing to sites of growth and cell fusion in Neurospora crassa. PLoS ONE 7:e51454. doi: 10.1371/journal.pone.0051454 PubMedPubMedCentralCrossRefGoogle Scholar
  82. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596. doi: 10.1038/nature04396 PubMedCrossRefGoogle Scholar
  83. Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306. doi: 10.1146/annurev.arplant.54.031902.134748 PubMedCrossRefGoogle Scholar
  84. Mishkind M, Vermeer JE, Darwish E, Munnik T (2009) Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J 60:10–21. doi: 10.1111/j.1365-313X.2009.03933.x PubMedCrossRefGoogle Scholar
  85. Monteiro D, Coelho PC, Rodrigues C, Camacho L, Quader H, Malho R (2005) Modulation of endocytosis in pollen tube growth by phosphoinositides and phospholipids. Protoplasma 226:31–38. doi: 10.1007/s00709-005-0102-x PubMedCrossRefGoogle Scholar
  86. Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I (2011) Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 65:949–957. doi: 10.1111/j.1365-313X.2011.04480.x PubMedCrossRefGoogle Scholar
  87. Moscatelli A, Idilli AI (2009) Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Integr Plant Biol 51:727–739. doi: 10.1111/j.1744-7909.2009.00842.x PubMedCrossRefGoogle Scholar
  88. Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N, Idilli A (2007) Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 120:3804–3819. doi: 10.1242/jcs.012138 PubMedCrossRefGoogle Scholar
  89. Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130:22–46. doi: 10.1104/pp.004770 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Munnik T, Musgrave A (2001) Phospholipid signaling in plants: holding on to phospholipase D. Sci STKE 2001:pe42. doi: 10.1126/stke.2001.111.pe42 PubMedGoogle Scholar
  91. Novakova P et al (2014) SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis. Proc Natl Acad Sci USA 111:2818–2823. doi: 10.1073/pnas.1324264111 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Oancea E, Teruel MN, Quest AF, Meyer T (1998) Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol 140:485–498PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ottenschlager I, Barinova I, Voronin V, Dahl M, Heberle-Bors E, Touraev A (1999) Green fluorescent protein (GFP) as a marker during pollen development. Transgenic Res 8:279–294PubMedCrossRefGoogle Scholar
  94. Oxley D, Ktistakis N, Farmaki T (2013) Differential isolation and identification of PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana using an agarose-phosphatidylinositol-phosphate affinity chromatography. J Proteomics 91:580–594. doi: 10.1016/j.jprot.2013.08.020 PubMedCrossRefGoogle Scholar
  95. Park KY, Jung JY, Park J, Hwang JU, Kim YW, Hwang I, Lee Y (2003) A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol 132:92–98. doi: 10.1104/pp.102.016964 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Park M et al (2013) Arabidopsis mu-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proc Natl Acad Sci USA 110:10318–10323. doi: 10.1073/pnas.1300460110 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Parton RM, Fischer-Parton S, Watahiki MK, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114:2685–2695PubMedGoogle Scholar
  98. Perera IY, Heilmann I, Boss WF (1999) Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci USA 96:5838–5843PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pleskot R et al (2012) Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front Plant Sci 3:54. doi: 10.3389/fpls.2012.00054 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E (2014) Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 96:144–157. doi: 10.1016/j.biochi.2013.07.004 PubMedCrossRefGoogle Scholar
  101. Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751. doi: 10.1111/j.1469-8137.2007.02042.x PubMedCrossRefGoogle Scholar
  102. Potocky M, Pleskot R, Pejchar P, Vitale N, Kost B, Zarsky V (2014) Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol 203:483–494. doi: 10.1111/nph.12814 PubMedCrossRefGoogle Scholar
  103. Preuss ML, Schmitz AJ, Thole JM, Bonner HKS, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4 K beta 1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172:991–998. doi: 10.1083/jcb.200508116 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pribat A et al (2012) A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid. Biochem J 441:161–171. doi: 10.1042/BJ20110776 PubMedCrossRefGoogle Scholar
  105. Qu LJ, Li L, Lan Z, Dresselhaus T (2015) Peptide signalling during the pollen tube journey and double fertilization. J Exp Bot 66:5139–5150. doi: 10.1093/jxb/erv275 PubMedCrossRefGoogle Scholar
  106. Rae AL, Harris PJ, Bacic A, Clarke AE (1985) Composition of the cell walls of Nicotiana alata Link et Otto pollen tubes. Planta 166:128–133. doi: 10.1007/BF00397395 PubMedCrossRefGoogle Scholar
  107. Robinson DG, Jiang L, Schumacher K (2008) The endosomal system of plants: charting new and familiar territories. Plant Physiol 147:1482–1492. doi: 10.1104/pp.108.120105 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Roy SJ, Holdaway-Clarke TL, Hackett GR, Kunkel JG, Lord EM, Hepler PK (1999) Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant J 19:379–386PubMedCrossRefGoogle Scholar
  109. Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161. doi: 10.1104/pp.104.040683 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sandelius AS, Sommarin M (1986) Phosphorylation of phosphatidylinositols in isolated plant membranes. FEBS Lett 201:282–286. doi: 10.1016/0014-5793(86)80624-x CrossRefGoogle Scholar
  111. Schaaf G et al (2008) Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol Cell 29:191–206. doi: 10.1016/j.molcel.2007.11.026 PubMedCrossRefGoogle Scholar
  112. Schreiber D, Dresselhaus T (2003) In vitro pollen germination and transient transformation of Zea mays and other plant species. Plant Mol Biol Report 21:31–41. doi: 10.1007/bf02773394 CrossRefGoogle Scholar
  113. Schuh AL, Audhya A (2012) Phosphoinositide signaling during membrane transport in Saccharomyces cerevisiae. Subcell Biochem 59:35–63. doi: 10.1007/978-94-007-3015-1_2 PubMedCrossRefGoogle Scholar
  114. Seiler S, Plamann M (2003) The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol Biol Cell 14:4352–4364. doi: 10.1091/mbc.E02-07-0433 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sheard LB et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405. doi: 10.1038/nature09430 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Singh A, Bhatnagar N, Pandey A, Pandey GK (2015) Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium 58:139–146. doi: 10.1016/j.ceca.2015.04.003 PubMedCrossRefGoogle Scholar
  117. Sousa E, Kost B, Malho R (2008) Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell 20:3050–3064. doi: 10.1105/tpc.108.058826 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Speranza A, Crinelli R, Scoccianti V, Geitmann A (2012) Reactive oxygen species are involved in pollen tube initiation in kiwifruit. Plant Biol 14:64–76. doi: 10.1111/j.1438-8677.2011.00479.x PubMedGoogle Scholar
  119. Stenzel I, Ischebeck T, Konig S, Holubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20:124–141. doi: 10.1105/tpc.107.052852 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Stenzel I, Ischebeck T, Quint M, Heilmann I (2012) Variable regions of PI4P 5-kinases direct PtdIns(4,5)P(2) toward alternative regulatory functions in tobacco pollen tubes. Front Plant Sci 2:114. doi: 10.3389/fpls.2011.00114 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Stevenson JM, Perera IY, Boss WF (1998) A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem 273:22761–22767PubMedCrossRefGoogle Scholar
  122. Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544. doi: 10.1105/tpc.108.060277 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Takenawa T (2010) Phosphoinositide-binding interface proteins involved in shaping cell membranes. Proc Jpn Acad Ser B Phys Biol Sci 86:509–523PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645. doi: 10.1038/nature05731 PubMedCrossRefGoogle Scholar
  125. Tang W, Kelley D, Ezcurra I, Cotter R, McCormick S (2004) LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. Plant J 39:343–353. doi: 10.1111/j.1365-313X.2004.02139.x PubMedCrossRefGoogle Scholar
  126. Tejos R et al (2014) Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26:2114–2128. doi: 10.1105/tpc.114.126185 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62:2349–2361. doi: 10.1093/jxb/err079 PubMedCrossRefGoogle Scholar
  128. Thole JM, Vermeer JE, Zhang Y, Gadella TW Jr, Nielsen E (2008) Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 20:381–395. doi: 10.1105/tpc.107.054304 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Touraev A, Lezin F, Heberlebors E, Vicente O (1995) Maintenance of gametophytic development after symmetrical division in tobacco microspore culture. Sex Plant Reprod 8:70–76CrossRefGoogle Scholar
  130. Twell D, Wing R, Yamaguchi J, Mccormick S (1989) Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet 217:240–245. doi: 10.1007/Bf02464887 PubMedCrossRefGoogle Scholar
  131. Vermeer JE et al (2006) Visualization of PtdIns3P dynamics in living plant cells. Plant J 47:687–700. doi: 10.1111/j.1365-313X.2006.02830.x PubMedCrossRefGoogle Scholar
  132. Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12:2534–2545PubMedPubMedCentralCrossRefGoogle Scholar
  133. Vincent P et al (2005) A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801–812. doi: 10.1083/jcb.200412074 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Viotti C et al (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357. doi: 10.1105/tpc.109.072637 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Viotti C et al (2013) The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. Plant Cell 25:3434–3449. doi: 10.1105/tpc.113.114827 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wang H, Jiang L (2011) Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat Protoc 6:419–426. doi: 10.1038/nprot.2011.309 PubMedCrossRefGoogle Scholar
  137. Wang YJ et al (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114:299–310PubMedCrossRefGoogle Scholar
  138. Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211. doi: 10.1104/pp.108.126375 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wang H, Zhuang X, Cai Y, Cheung AY, Jiang L (2013) Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall. Plant J 76:367–379. doi: 10.1111/tpj.12300 PubMedCrossRefGoogle Scholar
  140. Wang P et al (2014) The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr Biol 24:1397–1405. doi: 10.1016/j.cub.2014.05.003 PubMedCrossRefGoogle Scholar
  141. Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994) AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA 91:11398–11402PubMedPubMedCentralCrossRefGoogle Scholar
  142. Westergren T, Ekblad L, Jergil B, Sommarin M (1999) Phosphatidylinositol 4-kinase associated with spinach plasma membranes. Isolation and characterization of two distinct forms. Plant Physiol 121:507–516PubMedPubMedCentralCrossRefGoogle Scholar
  143. Whitley P, Hinz S, Doughty J (2009) Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. Plant Physiol 151:1812–1822. doi: 10.1104/pp.109.146159 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Xu N, Gao XQ, Zhao XY, Zhu DZ, Zhou LZ, Zhang XS (2011) Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. Plant Mol Biol 77:251–260. doi: 10.1007/s11103-011-9806-9 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Xue HW, Pical C, Brearley C, Elge S, Muller-Rober B (1999) A plant 126-kDa phosphatidylinositol 4-kinase with a novel repeat structure. Cloning and functional expression in baculovirus-infected insect cells. J Biol Chem 274:5738–5745PubMedCrossRefGoogle Scholar
  146. Xue HW, Hosaka K, Plesch G, Mueller-Roeber B (2000) Cloning of Arabidopsis thaliana phosphatidylinositol synthase and functional expression in the yeast pis mutant. Plant Mol Biol 42:757–764PubMedCrossRefGoogle Scholar
  147. Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16(Suppl):S133–S141. doi: 10.1105/tpc.018192 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yamamoto Y, Nishimura M, Hara-Nishimura I, Noguchi T (2003) Behavior of vacuoles during microspore and pollen development in Arabidopsis thaliana. Plant Cell Physiol 44:1192–1201PubMedCrossRefGoogle Scholar
  149. Yan Y, Backer JM (2007) Regulation of class III (Vps34) PI3Ks. Biochem Soc Trans 35:239–241. doi: 10.1042/BST0350239 PubMedCrossRefGoogle Scholar
  150. Zhang Y et al (2009) Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377. doi: 10.1105/tpc.108.062992 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zhang Y et al (2011) Overexpression of Arabidopsis thaliana PTEN caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3-phosphate dynamics. Plant J 68:1081–1092. doi: 10.1111/j.1365-313X.2011.04761.x PubMedCrossRefGoogle Scholar
  152. Zhao Y et al (2010) Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 22:4031–4044. doi: 10.1105/tpc.110.076760 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zhong R, Ye ZH (2003) The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol 132:544–555. doi: 10.1104/pp.103.021444 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhong R, Burk DH, Nairn CJ, Wood-Jones A, Morrison WH 3rd, Ye ZH (2005) Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell 17:1449–1466. doi: 10.1105/tpc.105.031377 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Zonia L, Tupý J, Staiger CJ (1999) Unique actin and microtubule arrays co-ordinate the differentiation of microspores to mature pollen in Nicotiana tabacum. J Exp Bot 50:581–594. doi: 10.1093/jxb/50.334.581 CrossRefGoogle Scholar
  156. Zou J, Song L, Zhang W, Wang Y, Ruan S, Wu WH (2009) Comparative proteomic analysis of Arabidopsis mature pollen and germinated pollen. J Integr Plant Biol 51:438–455. doi: 10.1111/j.1744-7909.2009.00823.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Cellular Biochemistry, Institute for BiochemistryMartin-Luther-University Halle-WittenbergHalle (Saale)Germany
  2. 2.Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant SciencesGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations