Advertisement

Plant Reproduction

, Volume 28, Issue 1, pp 61–72 | Cite as

SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content

  • Vera K. SchoftEmail author
  • Nina Chumak
  • János Bindics
  • Lucyna Slusarz
  • David Twell
  • Claudia Köhler
  • Hisashi TamaruEmail author
Original Article

Abstract

Key message

Purification of pollen nuclei.

Germ cell epigenetics is a critical topic in plants and animals. The male gametophyte (pollen) of flowering plants is an attractive model to study genetic and epigenetic reprogramming during sexual reproduction, being composed of only two sperm cells contained within, its companion, vegetative cell. Here, we describe a simple and efficient method to purify SYBR Green-stained sperm and vegetative cell nuclei of Arabidopsis thaliana pollen using fluorescence-activated cell sorting to analyze chromatin and RNA profiles. The method obviates generating transgenic lines expressing cell-type-specific fluorescence reporters and facilitates functional genomic analysis of various mutant lines and accessions. We evaluate the purity and quality of the sorted pollen nuclei and analyze the technique’s molecular basis. Our results show that both DNA and RNA contents contribute to SYBR Green-activated nucleus sorting and RNA content differences impact on the separation of sperm and vegetative cell nuclei. We demonstrate the power of the approach by sorting wild-type and polyploid mutant sperm and vegetative cell nuclei from mitotic and meiotic mutants, which is not feasible using cell-type-specific transgenic reporters. Our approach should be applicable to pollen nuclei of crop plants and possibly to cell/nucleus types and cell cycle phases of different species containing substantially different amounts of DNA and/or RNA.

Keywords

SYBR Green Fluorescence-activated cell sorting (FACS) Pollen Sperm nuclei Male gametophyte Arabidopsis 

Notes

Acknowledgments

We thank Gabriele Stengl and Gerald Schmauss from the BioOptics Facility for setting up and optimizing FACS, and Nicole Fellner and Günter Resch from the Campus Science Support Facility for electron microscopy. We thank Georg Krohne for advice and suggestions. We thank Sheila McCormick for an AtGEX2:eGFP transgenic line, and Marjorie Matzke for nrpe1 and drd3-1 seeds. VKS thanks Marc Berlinger for his support. This work was supported by Austrian Science Fund (FWF) Grants P21389-B03 and P24918-B21 (to H.T.).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

497_2015_258_MOESM1_ESM.pptx (943 kb)
Supplementary material 1 (PPTX 942 kb)
497_2015_258_MOESM2_ESM.docx (33 kb)
Supplementary material 2 (DOCX 33 kb)

References

  1. Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D (2011) The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23:534–549CrossRefPubMedCentralPubMedGoogle Scholar
  2. Borg M, Rutley N, Kagale S, Hamamura Y, Gherghinoiu M, Kumar S, Sari U, Esparza-Franco MA, Sakamoto W, Rozwadowski K, Higashiyama T, Twell D (2014) An EAR-dependent regulatory module promotes male germ cell Division and sperm fertility in Arabidopsis. Plant Cell 26:2098–2113CrossRefPubMedCentralPubMedGoogle Scholar
  3. Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijo JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181CrossRefPubMedCentralPubMedGoogle Scholar
  4. Borges F, Gardner R, Lopes T, Calarco JP, Boavida LC, Slotkin RK, Martienssen RA, Becker JD (2012) FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei. Plant Methods 8:44CrossRefPubMedCentralPubMedGoogle Scholar
  5. Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijo JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205CrossRefPubMedCentralPubMedGoogle Scholar
  6. Crissman HA, Darzynkiewicz Z, Tobey RA, Steinkamp JA (1985) Correlated measurements of DNA, RNA, and protein in individual cells by flow cytometry. Science 228:1321–1324CrossRefPubMedGoogle Scholar
  7. De Storme N, Geelen D (2011) The Arabidopsis mutant jason produces unreduced first division restitution male gametes through a parallel/fused spindle mechanism in meiosis II. Plant Physiol 155:1403–1415CrossRefPubMedCentralPubMedGoogle Scholar
  8. Durbarry A, Vizir I, Twell D (2005) Male germ line development in Arabidopsis. duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiol 137:297–307CrossRefPubMedCentralPubMedGoogle Scholar
  9. Engel ML, Holmes-Davis R, McCormick S (2005) Green sperm. Identification of male gamete promoters in Arabidopsis. Plant Physiol 138:2124–2133CrossRefPubMedCentralPubMedGoogle Scholar
  10. Erilova A, Brownfield L, Exner V, Rosa M, Twell D, Scheid OM, Hennig L, Kohler C (2009) Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 5:e1000663CrossRefPubMedCentralPubMedGoogle Scholar
  11. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627CrossRefPubMedCentralPubMedGoogle Scholar
  12. Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451CrossRefPubMedCentralPubMedGoogle Scholar
  13. Gothot A, Pyatt R, McMahel J, Rice S, Srour EF (1997) Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0/G1 phase of the cell cycle. Blood 90:4384–4393PubMedGoogle Scholar
  14. Guzzardo PM, Muerdter F, Hannon GJ (2013) The piRNA pathway in flies: highlights and future directions. Curr Opin Genet Dev 23:44–52CrossRefPubMedCentralPubMedGoogle Scholar
  15. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652CrossRefPubMedCentralPubMedGoogle Scholar
  16. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85CrossRefPubMedCentralPubMedGoogle Scholar
  17. Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454CrossRefPubMedCentralPubMedGoogle Scholar
  18. Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364CrossRefPubMedCentralPubMedGoogle Scholar
  19. Johnson-Brousseau SA, McCormick S (2004) A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. Plant J 39:761–775CrossRefPubMedGoogle Scholar
  20. Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193PubMedCentralPubMedGoogle Scholar
  21. Owen HA, Makaroff CA (1995) Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185:7–21CrossRefGoogle Scholar
  22. Patel A, Noble RT, Steele JA, Schwalbach MS, Hewson I, Fuhrman JA (2007) Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat Protoc 2:269–276CrossRefPubMedGoogle Scholar
  23. Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O, Vielle-Calzada JP, Grossniklaus U, Grimanelli D (2010) Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. Plant Cell 22:307–320CrossRefPubMedCentralPubMedGoogle Scholar
  24. Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15:244–248CrossRefPubMedGoogle Scholar
  25. Schoft VK, Chumak N, Mosiolek M, Slusarz L, Komnenovic V, Brownfield L, Twell D, Kakutani T, Tamaru H (2009) Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin. EMBO Rep 10:1015–1021CrossRefPubMedCentralPubMedGoogle Scholar
  26. Schoft VK, Chumak N, Choi Y, Hannon M, Garcia-Aguilar M, Machlicova A, Slusarz L, Mosiolek M, Park JS, Park GT, Fischer RL, Tamaru H (2011) Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci USA 108:8042–8047CrossRefPubMedCentralPubMedGoogle Scholar
  27. Shapiro HM (1981) Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cytometry 2:143–150. doi: 10.1002/cyto.990020302 CrossRefPubMedGoogle Scholar
  28. Shen H, Boyer M, Cheng T (2008) Flow cytometry-based cell cycle measurement of mouse hematopoietic stem and progenitor cells. Methods Mol Biol 430:77–86CrossRefPubMedGoogle Scholar
  29. Simpson DA, Feeney S, Boyle C, Stitt AW (2000) Retinal VEGF mRNA measured by SYBR green I fluorescence: a versatile approach to quantitative PCR. Mol Vis 6:178–183PubMedGoogle Scholar
  30. Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472CrossRefPubMedCentralPubMedGoogle Scholar
  31. Twell D, Park SK, Lalanne E (1998) Asymmetric division and cell-fate determination in developing pollen. Trends Plant Sci 3:305–310CrossRefGoogle Scholar
  32. Verelst W, Twell D, de Folter S, Immink R, Saedler H, Munster T (2007) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8:R249CrossRefPubMedCentralPubMedGoogle Scholar
  33. Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32:e103CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vera K. Schoft
    • 1
    Email author
  • Nina Chumak
    • 1
    • 4
  • János Bindics
    • 1
  • Lucyna Slusarz
    • 1
  • David Twell
    • 2
  • Claudia Köhler
    • 3
  • Hisashi Tamaru
    • 1
    Email author
  1. 1.Gregor Mendel InstituteAustrian Academy of SciencesViennaAustria
  2. 2.Department of BiologyUniversity of LeicesterLeicesterUK
  3. 3.Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center of Plant BiologyUppsalaSweden
  4. 4.Institute of Plant BiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations