Plant Reproduction

, Volume 27, Issue 2, pp 79–94 | Cite as

Flower development in Coffea arabica L.: new insights into MADS-box genes

  • Raphael Ricon de Oliveira
  • Igor Cesarino
  • Paulo Mazzafera
  • Marcelo Carnier Dornelas
Original Article


Coffea arabica L. shows peculiar characteristics during reproductive development, such as flowering asynchrony, periods of floral bud dormancy, mucilage secretion and epipetalous stamens. The MADS-box transcription factors are known to control several developmental processes in plants, including flower and fruit development. Significant differences are found among plant species regarding reproductive development and little is known about the role of MADS-box genes in Coffea reproductive development. Thus, we used anatomical and comparative molecular analyses to explore the flowering process in coffee. The main morphological changes during flower development in coffee were observed by optical and scanning electron microscopy. Flowering asynchrony seems to be related to two independent processes: the asynchronous development of distinct buds before the reproductive induction and the asynchronous development of floral meristems within each bud after the reproductive induction. A total of 23 C. arabica MADS-box genes were characterized by sequence comparison with putative Arabidopsis orthologs and their expression profiles were analyzed by RT-PCR in different tissues. The expression of the ABC model orthologs in Coffea during floral development was determined by in situ hybridization. The APETALA1 (AP1) ortholog is expressed only late in the perianth, which is also observed for the APETALA3 and TM6 orthologs. Conversely, the PISTILLATA ortholog is widely expressed in early stages, but restrict to stamens and carpels in later stages of flower development, while the expression of the AGAMOUS ortholog is always restricted to fertile organs. The AP1 and PISTILLATA orthologs are also expressed at specific floral organs, such as bracts and colleters, respectively, suggesting a potential role in the development of such structures. Altogether, the results from our comprehensive expression analyses showed significant differences between the spatiotemporal expression profiles of C. arabica MADS-box genes and their orthologs, which suggests differential functionalization in coffee. Moreover, these differences might also partially explain the particular characteristics of floral development in coffee, such as mucilage secretion and formation of epipetalous stamens.


Coffea arabica L. Flower development MADS-box genes Gene expression In situ hybridization 



We thank Instituto Agronômico de Campinas (IAC) for providing the plant materials, Dr. Sandra Maria Carmello-Guerreiro (IB/Unicamp) for the support and useful comments on the morphological analyses, Dr. Elliot W. Kitajima (NAP/ESALQ-USP) for the assistance in the scanning electron microscopy analysis, Dr. Siu Mui Tsai (Genome Lab/CENA) for the sequencing, Dr. Maria Bernadette Silvarolla (IAC) for support and assistance and Dr. David Newman for kindly proofreading the manuscript. Raphael Ricon de Oliveira thanks the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the student fellowship, Paulo Mazzafera and Marcelo Carnier Dornelas thank CNPq for the research fellowships. This work was supported by FAPESP and CNPq.

Supplementary material

497_2014_242_MOESM1_ESM.doc (814 kb)
Supplementary material 1 (DOC 813 kb)


  1. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  2. Álvarez-Buylla ER, Pelaz S, Liljegren SJ et al (2000a) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5333PubMedCentralPubMedCrossRefGoogle Scholar
  3. Álvarez-Buylla ER, Liljegren SJ, Pelaz S et al (2000b) MADS-box gene evolution beyond flower: expression in pollen, endosperm, grand cells, roots and trichomes. Plant J 24:457–466PubMedCrossRefGoogle Scholar
  4. Araújo P, Cesarino I, Carmello-Guerreiro SM, Dornelas MC (2013) Citrus sinensis L. Osbeck orthologs of FRUITFULL and SHATTERPROOF are differentially expressed during fruit development. Plant Growth Regul 70:1–13CrossRefGoogle Scholar
  5. Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1–11PubMedCentralPubMedCrossRefGoogle Scholar
  6. Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664PubMedCrossRefGoogle Scholar
  7. Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489PubMedCrossRefGoogle Scholar
  8. Berbel A, Navarro C, Ferrándiz C, Cañas LA, Madueño F, Beltrán JP (2001) Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25:441–451PubMedCrossRefGoogle Scholar
  9. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chandler J, Nardmann J, Werr W (2008) Plant development revolves around axes. Trends Plant Sci 13(2):78–84PubMedCrossRefGoogle Scholar
  11. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37PubMedCrossRefGoogle Scholar
  12. Colombo M, Brambilla V, Marcheselli R et al (2010) A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Dev Biol 337(2):294–302PubMedCrossRefGoogle Scholar
  13. Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034PubMedCentralPubMedCrossRefGoogle Scholar
  14. Davis AP, Govaerts R, Bridson DM, Stoffelen P (2006) An annotated checklist of the genus Coffea L. (Rubiaceae). Bot J Linn Soc 152:465–512CrossRefGoogle Scholar
  15. De Bodt S, Raes J, Florquin K et al (2003) Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J Mol Evol 56:573–586PubMedCrossRefGoogle Scholar
  16. Dedecca DM (1957) Anatomia e desenvolvimento ontogenético de Coffea arabica L. var. Typica Cramer. Bragantia 16(23):315–366CrossRefGoogle Scholar
  17. Dias BFO, Simões-Araújo JL, Russo CAM et al (2005) Unravelling MADS-box gene family in Eucalyptus spp.: a starting point to na understanding of their developmental role in trees. Genet Mol Biol 28(3):501–510CrossRefGoogle Scholar
  18. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940PubMedCrossRefGoogle Scholar
  19. Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  20. Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379PubMedCentralPubMedCrossRefGoogle Scholar
  21. Endress PK (1994) Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst Evol 192:79–97CrossRefGoogle Scholar
  22. Fassio LH, Silva AES (2007) Importância econômica e social do café Conilon. In: Ferrão RG et al (eds) Café Conilon. Incaper, Vitória, pp 37–52Google Scholar
  23. Feng W, Jacob Y, Kira MV et al (2011) Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C. Plant Physiol 155:1425–1434PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734PubMedGoogle Scholar
  25. Geuten K, Becker A, Kaufmann K et al (2006) Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. Plant J 47:501–518PubMedCrossRefGoogle Scholar
  26. Grassias M, Kammacher P (1975) Observation sur la conjugaison chromosomique de Coffea arabica L. Café Cacao Thé 19:177–190Google Scholar
  27. Gregis V, Sessa A, Colombo L et al (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18:1373–1382PubMedCentralPubMedCrossRefGoogle Scholar
  28. Gregis V, Sessa A, Colombo L et al (2008) AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J 56:891–902PubMedCrossRefGoogle Scholar
  29. Gregis V, Sessa A, Dorca-Fornell C et al (2009) The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J 60:626–637PubMedCrossRefGoogle Scholar
  30. Hernández-Hernández T, Martínez-Castilla LP, Álvarez-Buylla ER (2007) Functional diversification of B MADS-box homeotic regulators of flower development: adaptive evolution in protein–protein interaction domains after major gene duplication events. Mol Biol Evol 24(2):465–481PubMedCrossRefGoogle Scholar
  31. Hiepko P (1965) Vergleichend-morphologische und entwicklungs-geschichtliche Untersuchungen über das Perianth bei den Polycarpicae. Botanische Jarhbücher für Systematik 84:359–508Google Scholar
  32. Hileman LC, Irish VF (2009) More is better: the uses of developmental genetic data to reconstruct perianth evolution. Am J Bot 96(1):83–95PubMedCrossRefGoogle Scholar
  33. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCentralPubMedCrossRefGoogle Scholar
  34. Huijser P, Klein J, Lönnig WE et al (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11:1239–1249PubMedCentralPubMedGoogle Scholar
  35. Immink RGH, Tonaco IAN, Folter S et al (2009) SEPALLATA3: the “glue” for MADS box transcription factor complex formation. Genome Biol 10:R24PubMedCentralPubMedCrossRefGoogle Scholar
  36. Itkin M, Seybold H, Breitel D et al (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60(6):1081–1095PubMedCrossRefGoogle Scholar
  37. Kaufmann K, Wellmer F, Muiño JM et al (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89PubMedCrossRefGoogle Scholar
  38. Kim ST, Yoo MJ, Albert VA et al (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91:2102–2118PubMedCrossRefGoogle Scholar
  39. Kim S, Koh J, Yoo M-J et al (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43:724–744PubMedCrossRefGoogle Scholar
  40. Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783PubMedCentralPubMedGoogle Scholar
  41. Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011–1023PubMedCentralPubMedCrossRefGoogle Scholar
  42. Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nature 6:688–698Google Scholar
  43. Lashermes P, Combes MC, Robert J et al (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261(2):259–266PubMedCrossRefGoogle Scholar
  44. Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61(9):2247–2254PubMedCrossRefGoogle Scholar
  45. Li D, Liu C, Shen L et al (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120PubMedCrossRefGoogle Scholar
  46. Liljegren SJ, Ditta GS, Eshed Y et al (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770PubMedCrossRefGoogle Scholar
  47. Litt A (2007) An evaluation of A-function: evidence from the APETALA1 and APETALA2 gene lineages. Int J Plant Sci 168(1):73–91CrossRefGoogle Scholar
  48. Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833PubMedCentralPubMedGoogle Scholar
  49. Litt A, Kramer EM (2010) The ABC model and the diversification of floral organ identity. Semin Cell Dev Biol 21:129–137PubMedCrossRefGoogle Scholar
  50. Liu C, Zhou J, Bracha-Drori K et al (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134:1901–1910PubMedCrossRefGoogle Scholar
  51. Liu C, Chen H, Er HL et al (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491PubMedCrossRefGoogle Scholar
  52. Majerovicz N, Söndahl MR (2005) Induction and differentiation of reproductive buds in Coffea arabica L. Braz J Plant Physiol 17(2):247–254CrossRefGoogle Scholar
  53. Mandel MA, Gustafson-Brown C, Savidge B et al (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277PubMedCrossRefGoogle Scholar
  54. Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21PubMedCrossRefGoogle Scholar
  55. Morais H, Caramori PH, Koguishi MS et al (2008) Escala fenológica detalhada da fase reprodutiva de Coffea arabica. Bragantia 67(1):257–260CrossRefGoogle Scholar
  56. Münster T, Wingen LU, Faigl W et al (2001) Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene 262:1–13PubMedCrossRefGoogle Scholar
  57. Münster T, Faigl W, Saedler H et al (2002) Evolutionary aspects of MADS-box genes in the Eusporangiate Fern Ophioglossum. Plant Biol 4:474–483CrossRefGoogle Scholar
  58. Oliveira RR, Chalfun-Junior A, Paiva LV et al (2010) In silico and quantitative analyses of MADS-box genes in Coffea arabica. Plant Mol Biol Rep 28:460–472CrossRefGoogle Scholar
  59. Pabón-Mora N, Ambrose BA, Litt A (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol 158:1685–1704PubMedCentralPubMedCrossRefGoogle Scholar
  60. Pan IL, McQuinn R, Giovannoni JJ et al (2010) Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J Exp Bot 61(6):1795–1806PubMedCentralPubMedCrossRefGoogle Scholar
  61. Parenicová L, Folter S, Kieffer M et al (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551PubMedCentralPubMedCrossRefGoogle Scholar
  62. Perbal MC, Haughn G, Saedler H et al (1996) Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441PubMedGoogle Scholar
  63. Pinyopich A, Ditta GS, Savidge B et al (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88PubMedCrossRefGoogle Scholar
  64. Poupin MJ, Federici F, Medina C et al (2007) Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404(1–2):10–24PubMedCrossRefGoogle Scholar
  65. Rezaian MA, Krake LR (1987) Nucleic acid extraction and virus detection in grapevine. J Virol Methods 17:277–285PubMedCrossRefGoogle Scholar
  66. Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Proc Natl Acad Sci USA 93:4793–4798PubMedCentralPubMedCrossRefGoogle Scholar
  67. Rijpkema AS, Zethof J, Gerats T et al (2009) The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J 60:1–9PubMedCrossRefGoogle Scholar
  68. Robles P, Pelaz S (2005) Flower and fruit development in Arabidopsis thaliana. Int J Dev Biol 49:633–643PubMedCrossRefGoogle Scholar
  69. Ronse De Craene LP (2007) Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann Bot 100:621–630PubMedCentralPubMedCrossRefGoogle Scholar
  70. Ronse De Craene LP (2008) Homology and evolution of petals in the core eudicots. Syst Bot 33:301–325CrossRefGoogle Scholar
  71. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  72. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  73. Shen Y, Venu RC, Nobuta K et al (2011) Transcriptome dynamics through alternative polyadenylation in developmental and environmental responses in plants revealed by deep sequencing. Genome Res 21:1478–1486PubMedCentralPubMedCrossRefGoogle Scholar
  74. Skipper M (2002) Genes from the APETALA3 and PISTILLATA lineages are expressed in developing vascular bundles of the tuberous rhizome, flowering stem and flower Primordia of Eranthis hyemalis. Ann Bot 89(1):83–88PubMedCrossRefGoogle Scholar
  75. Smaczniak C, Immink RG, Angenent GC et al (2012) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139(17):3081–3098PubMedCrossRefGoogle Scholar
  76. Southerton SG, Marshall H, Mouradov A et al (1998) Eucalypt MADS-box genes expressed in developing flowers. Plant Physiol 118(2):365–372PubMedCentralPubMedCrossRefGoogle Scholar
  77. Srinivasan C, Mullins MG (1978) Control of flowering in the grapevine (Vitis vinifera L.): formation of inflorescences in vitro by isolated tendrils. Plant Physiol 61(1):127–130PubMedCentralPubMedCrossRefGoogle Scholar
  78. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  79. Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100(3):603–619PubMedCentralPubMedCrossRefGoogle Scholar
  80. Theissen G, Becker A, Di Rosa A et al (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149PubMedCrossRefGoogle Scholar
  81. Urbanus SL, de Folter S, Shchennikova AV et al (2009) In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol 9:5PubMedCentralPubMedCrossRefGoogle Scholar
  82. Vieira LGE, Andrade AC, Colombo CA et al (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18(1):95–108CrossRefGoogle Scholar
  83. Winter KU, Saedler H, Theissen G (2002) On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an ortholog from the gymnosperm Gnetum. Plant J 31:457–475PubMedCrossRefGoogle Scholar
  84. Wormer TM, Gituanja J (1970) Floral initiation and flowering of Coffea arabica L. in Kenya. Exp Agric 6:157–170CrossRefGoogle Scholar
  85. Yang YZ, Jack T (2004) Defining subdomains of the K domain important for protein–protein interactions of plant MADS proteins. Plant Mol Biol 55:45–59PubMedCrossRefGoogle Scholar
  86. Yu D, Kotilainen M, Pollanen E et al (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62PubMedCrossRefGoogle Scholar
  87. Yu H, Xu Y, Tan EL et al (2002) AGAMOUS-LIKE 24, dosage-dependent mediator of the flowering signals. Proc Natl Acad of Sci USA 99:16336–16341CrossRefGoogle Scholar
  88. Yu H, Ito T, Wellmer F et al (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet 36:157–161PubMedCrossRefGoogle Scholar
  89. Zahn LM, Kong H, Leebens-Mack JH et al (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169(4):2209–2223PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Raphael Ricon de Oliveira
    • 1
  • Igor Cesarino
    • 2
    • 3
  • Paulo Mazzafera
    • 4
  • Marcelo Carnier Dornelas
    • 4
  1. 1.Centro de Biologia Molecular e Engenharia GenéticaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Department of Plant Systems BiologyVIBGhentBelgium
  3. 3.Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
  4. 4.Departamento de Biologia VegetalUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations