Plant Reproduction

, Volume 26, Issue 3, pp 197–208 | Cite as

SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis

  • L. Zamariola
  • N. De Storme
  • CL. Tiang
  • S. J. Armstrong
  • F. C. H. Franklin
  • D. Geelen
Original Article


Shugoshin is a protein conserved in eukaryotes and protects sister chromatid cohesion at centromeres in meiosis. In our study, we identified the homologs of SGO1 and SGO2 in Arabidopsis thaliana. We show that AtSGO1 is necessary for the maintenance of centromere cohesion in meiosis I since atsgo1 mutants display premature separation of sister chromatids starting from anaphase I. Furthermore, we show that the localization of the specific centromeric cohesin AtSYN1 is not affected in atsgo1, suggesting that SGO1 centromere cohesion maintenance is not mediated by protection of SYN1 from cleavage. Finally, we show that AtSGO2 is dispensable for both meiotic and mitotic cell progression in Arabidopsis.


Arabidopsis Meiosis Shugoshin Centromere cohesion 



We are grateful to the EMBO Short-Term Fellowship and STSM COST Action FA0903. Work in Sue Armstrong’s laboratory is funded from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement number KBBE-2009-222883. We thank Steve Price for his technical support.

Supplementary material

497_2013_231_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 27 kb)
497_2013_231_MOESM2_ESM.pptx (1.3 mb)
Supplementary material 2 (PPTX 1339 kb)


  1. Armstrong SJ, Sanchez-moran E, Chris F, Franklin H (2009) Meiosis. Methods Mol Biol 558:131–145. doi: 10.1007/978-1-60761-103-5 PubMedCrossRefGoogle Scholar
  2. Bai X, Peirson BN, Dong F et al (1999) Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis. Plant Cell 11:417–430PubMedGoogle Scholar
  3. Bhatt AM, Lister C, Page T et al (1999) The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J Cell Mol Biol 19:463–472CrossRefGoogle Scholar
  4. Cai X, Dong F, Edelmann RE, Makaroff CA (2003) The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci 116:2999–3007. doi: 10.1242/jcs.00601 PubMedCrossRefGoogle Scholar
  5. Chelysheva L, Diallo S, Vezon D et al (2005) AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118:4621–4632. doi: 10.1242/jcs.02583 PubMedCrossRefGoogle Scholar
  6. Chelysheva L, Grandont L, Vrielynck N et al (2010) An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis: immunodetection of cohesins, histones and MLH1. Cytogenet Genome Res 129:143–153. doi: 10.1159/000314096 PubMedCrossRefGoogle Scholar
  7. Clift D, Marston AL (2011) The role of shugoshin in meiotic chromosome segregation. Cytogenet Genome Res 133:234–242. doi: 10.1159/000323793 PubMedCrossRefGoogle Scholar
  8. De Storme N, Geelen D (2011) The Arabidopsis mutant jason produces unreduced first division restitution male gametes through a parallel/fused spindle mechanism in meiosis II. Plant Physiol 155:1403–1415. doi: 10.1104/pp.110.170415 PubMedCrossRefGoogle Scholar
  9. Dong F, Cai X, Makaroff CA (2001) Cloning and characterization of two Arabidopsis genes that belong to the RAD21/REC8 family of chromosome cohesin proteins. Gene 271:99–108PubMedCrossRefGoogle Scholar
  10. Gómez R, Valdeolmillos A, Parra MT et al (2007) Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis. EMBO Rep 8:173–180. doi: 10.1038/sj.embor.7400877 PubMedCrossRefGoogle Scholar
  11. Gutiérrez-Caballero C, Cebollero LR, Pendás AM (2012) Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends Genet 28:351–360. doi: 10.1016/j.tig.2012.03.003 PubMedCrossRefGoogle Scholar
  12. Hamant O, Golubovskaya I, Meeley R et al (2005) A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol 15:948–954. doi: 10.1016/j.cub.2005.04.049 PubMedCrossRefGoogle Scholar
  13. Hauf S, Roitinger E, Koch B et al (2005) Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol 3:e69. doi: 10.1371/journal.pbio.0030069 PubMedCrossRefGoogle Scholar
  14. Higgins JD, Sanchez-Moran E, Armstrong SJ et al (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500. doi: 10.1101/gad.354705 PubMedCrossRefGoogle Scholar
  15. Huang H, Feng J, Famulski J et al (2007) Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol 177:413–424. doi: 10.1083/jcb.200701122 PubMedCrossRefGoogle Scholar
  16. Indjeian VB, Stern BM, Murray AW (2005) The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science (New York, NY) 307:130–133. doi: 10.1126/science.1101366 CrossRefGoogle Scholar
  17. Katis VL, Galova M, Rabitsch KP et al (2004) Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol 14:560–572. doi: 10.1016/j PubMedCrossRefGoogle Scholar
  18. Katis VL, Lipp JJ, Imre R et al (2010) Rec8 phosphorylation by casein kinase 1 and Cdc7-Dbf4 kinase regulates cohesin cleavage by separase during meiosis. Dev Cell 18:397–409. doi: 10.1016/j.devcel.2010.01.014 PubMedCrossRefGoogle Scholar
  19. Kawashima S, Tsukahara T, Langegger M et al (2007) Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev 21:420–435. doi: 10.1101/gad.1497307 PubMedCrossRefGoogle Scholar
  20. Kawashima SA, Yamagishi Y, Honda T et al (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327:172–177. doi:  10.1126/science.1180189 Google Scholar
  21. Kerrebrock AW, Miyazaki WY, Birnbyt D, Orr-weaver TL (1992) The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genet Soc Am 841:827–841Google Scholar
  22. Kerrebrock AW, Moore DP, Wu JS, Orr-Weaver TL (1995) Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 83:247–256PubMedCrossRefGoogle Scholar
  23. Kitajima TS, Miyazaki Y, Yamamoto M, Watanabe Y (2003) Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO J 22:5643–5653. doi: 10.1093/emboj/cdg527 PubMedCrossRefGoogle Scholar
  24. Kitajima TS, Kawashima SA, Watanabe Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510–517. doi: 10.1038/nature02312 PubMedCrossRefGoogle Scholar
  25. Klein F, Mahr P, Galova M et al (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103. doi: 10.1016/S0092-8674(00)80609-1 PubMedCrossRefGoogle Scholar
  26. Lee J, Okada K (2006) Loss of Rec8 from chromosome arm and centromere region is required for homologous chromosome separation and sister chromatid separation, respectively, in mammalian meiosis. Cell Cycle 8:1448–1455CrossRefGoogle Scholar
  27. Lee J, Kitajima TS, Tanno Y et al (2008) Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 10:42–52. doi: 10.1038/ncb1667 PubMedCrossRefGoogle Scholar
  28. Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35:673–745. doi: 10.1146/annurev.genet.35.102401.091334 PubMedCrossRefGoogle Scholar
  29. Pasierbek P, Jantsch M, Melcher M et al (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–1360. doi: 10.1101/gad.192701 PubMedCrossRefGoogle Scholar
  30. Perera D, Taylor SS (2010) Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis. J Cell Sci 123:653–659. doi: 10.1242/jcs.059501 PubMedCrossRefGoogle Scholar
  31. Rabitsch KP, Gregan J, Schleiffer A et al (2004) Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 14:287–301. doi: 10.1016/j.cub.2004.01.051 PubMedGoogle Scholar
  32. Riedel CG, Katis VL, Katou Y et al (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441:53–61. doi: 10.1038/nature04664 PubMedCrossRefGoogle Scholar
  33. Shao T, Tang D, Wang K et al (2011) OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol 156:1386–1396. doi: 10.1104/pp.111.177428 PubMedCrossRefGoogle Scholar
  34. Tang TT, Bickel SE, Young LM, Orr-Weaver TL (1998) Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEI-S332 protein. Genes Dev 12:3843–3856PubMedCrossRefGoogle Scholar
  35. Tiang CL (2010) The role OF SYN1 in early Arabidopsis meiosis. Ph.D. thesis, University of BirminghamGoogle Scholar
  36. Tsukahara T, Tanno Y, Watanabe Y (2010) Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature 467:719–723. doi: 10.1038/nature09390 PubMedCrossRefGoogle Scholar
  37. Vanoosthuyse V, Prykhozhij S, Hardwick KG (2007) Shugoshin 2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol Biol Cell 18:1657–1669. doi: 10.1091/mbc.E06 PubMedCrossRefGoogle Scholar
  38. Wang M, Tang D, Wang K et al (2011) OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant J Cell Mol Biol 67:583–594. doi: 10.1111/j.1365-313X.2011.04615.x CrossRefGoogle Scholar
  39. Watanabe Y (2005) Sister chromatid cohesion along arms and at centromeres. Trends Genet 21:405–412. doi: 10.1016/j.tig.2005.05.009 PubMedCrossRefGoogle Scholar
  40. Watanabe Y, Kitajima TS (2005) Shugoshin protects cohesin complexes at centromeres. Philos Trans R Soc Lond B Biol Sci 360:515–521. doi: 10.1098/rstb.2004.1607, discussion 521PubMedCrossRefGoogle Scholar
  41. Xu Z, Cetin B, Anger M et al (2009) Structure and function of the PP2A–shugoshin interaction. Mol Cell 35:426–441. doi: 10.1016/j.molcel.2009.06.031 PubMedCrossRefGoogle Scholar
  42. Yamagishi Y, Sakuno T, Shimura M, Watanabe Y (2008) Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455:251–255. doi: 10.1038/nature07217 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. Zamariola
    • 1
  • N. De Storme
    • 1
  • CL. Tiang
    • 2
  • S. J. Armstrong
    • 3
  • F. C. H. Franklin
    • 3
  • D. Geelen
    • 1
  1. 1.Department of Plant Production, Faculty of Bioscience EngineeringUniversity of GhentGhentBelgium
  2. 2.Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA
  3. 3.School of BioscienceUniversity of BirminghamBirminghamUK

Personalised recommendations