Advertisement

Sexual Plant Reproduction

, Volume 25, Issue 1, pp 39–60 | Cite as

Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis

  • David Reňák
  • Nikoleta Dupl’áková
  • David HonysEmail author
Original Article

Abstract

Male gametophyte development leading to the formation of a mature pollen grain is precisely controlled at various levels, including transcriptional, post-transcriptional and post-translational, during its whole progression. Transcriptomic studies exploiting genome-wide microarray technologies revealed the uniqueness of pollen transcriptome and the dynamics of early and late successive global gene expression programs. However, the knowledge of transcription regulation is still very limited. In this study, we focused on the identification of pollen-expressed transcription factor (TF) genes involved in the regulation of male gametophyte development. To achieve this, the reverse genetic approach was used. Seventy-four T-DNA insertion lines were screened, representing 49 genes of 21 TF families active in either early or late pollen development. In the screen, ten phenotype categories were distinguished, affecting various structural or functional aspects, including pollen abortion, presence of inclusions, variable pollen grain size, disrupted cell wall structure, cell cycle defects, and male germ unit organization. Thirteen lines were not confirmed to contain the T-DNA insertion. Among 61 confirmed lines, about half (29 lines) showed strong phenotypic changes (i.e., ≥25% aberrant pollen) including four lines that produced a remarkably high proportion (70–100%) of disturbed pollen. However, the remaining 32 lines exhibited mild defects or resembled wild-type appearance. There was no significant bias toward any phenotype category among early and late TF genes, nor, interestingly, within individual TF families. Presented results have a potential to serve as a basal information resource for future research on the importance of respective TFs in male gametophyte development.

Keywords

Male gametophyte Transcription factor T-DNA insertion line Phenotype screen Pollen phenotypic defects 

Abbreviations

BCP

Bicellular pollen

MGU

Male germ unit

MPG

Mature pollen grain

SAIL

Syngenta Arabidopsis insertion library

TCP

Tricellular pollen

TF

Transcription factor

UNM

Unicellular microspore

ZFP

Zinc finger protein

Notes

Acknowledgments

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic (KJB600380701), the Czech Science Foundation (522/09/0858) and the Ministry of Education, Youth and Sports of the Czech Republic (OC10054).

Supplementary material

497_2011_178_MOESM1_ESM.xls (66 kb)
Supplementary Table 1. Expression values and detection calls of selected genes in male gametophytic and sporophytic tissues. Sporophytic datasets were downloaded from the aGFP database (Dupl’áková et al. 2007). Gametophytic datasets were downloaded from public repositories and correspond to following publications: Honys (Honys and Twell, 2004), Pina (Pina et al., 2005), Zimmermann, (Zimmermann et al., 2004), Borges (Borges et al., 2008), Qin (Qin et al., 2009), and Wang (Wang et al. 2008a, 2008b). Datasets are labeled as follows: UNM, uninucleate microspore; BCP, bicellular pollen; TCP, tricellular pollen; MPG, mature pollen grain; SPC, sperm cell; GP30, pollen germinated for 30 min; GP45, pollen germinated for 45 min; PT4, pollen tubes grown in vitro for 4 h; PT8, semi in vitro cultivated pollen tubes – 3 h in pistil, 5h in vitro; SL, seedlings; WP, whole plant; LF, leaves; PT, petiole; ST, stem; RT, roots; RH, root hair elongation zone; SU, suspension cell cultures. (XLS 66 kb)
497_2011_178_MOESM2_ESM.doc (96 kb)
Supplementary Table 2. The complete list of 49 early and late TF genes and corresponding 74 T-DNA insertion lines with marked position of insertion sites and sequence of the appropriate F and R PCR primers. (DOC 96 kb)
497_2011_178_MOESM3_ESM.doc (146 kb)
Supplementary Table 3. Summary of pollen phenotype of segregated wild-type plants in the progeny of heterozygous plants (self-cross) for respective T-DNA lines.. The numbers represent the percent proportion of pollen phenotypic defects observed in each phenotype category.(DOC 146 kb)

References

  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Plant Cell 15:63–78PubMedCrossRefGoogle Scholar
  2. Adamczyk BJ, Fernandes DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Phys 149:1713–1723CrossRefGoogle Scholar
  3. Alonso JM, Stepanova AN, Weisse TJ, Kim CJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  4. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, root and trichomes. Plant J 24:457–466PubMedCrossRefGoogle Scholar
  5. Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2005) The HKM gene, which is identical to MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sex Plant Reprod 18:1–7CrossRefGoogle Scholar
  6. Bateman A, Finn RD, Sims PJ, Wiedmer T, Biegert A, Söding J (2008) Phospholipid scramblases and Tubby-like proteins belong to a new superfamily of membrane tethered transcription factors. Bioinformatics 2:159–162Google Scholar
  7. Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725PubMedCrossRefGoogle Scholar
  8. Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in Arabidopsis thaliana genome. Plant Cell 12:1093–1101PubMedCrossRefGoogle Scholar
  9. Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L (1999) Implication of tubby proteins as transcription factors by a structure-based functional analysis. Science 2:2119–2125CrossRefGoogle Scholar
  10. Bonhomme S, Horlow C, Vezon D, de Laissardiere S, Guyon A, Ferault M, Marchand M, Bechtold N, Pelletier G (1998) T-DNA mediated disruption of essential gametophytic genes in Arabidopsis is unexpectedly rare and cannot be inferred from segregation distortion alone. Mol Gen Genet 260:444–452PubMedCrossRefGoogle Scholar
  11. Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478PubMedCrossRefGoogle Scholar
  12. Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijo JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181PubMedCrossRefGoogle Scholar
  13. Bouché N, Bouchez D (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Op Plant Biol 4:111–117CrossRefGoogle Scholar
  14. Brownfield L, Hafidh S, Borg M, Sidorova A, Mori T, Twell D (2009) A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet 5:e1000430PubMedCrossRefGoogle Scholar
  15. Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, DeWald D, Kreps J, Zhu T, Wu Y (2007) A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol 145:98–105PubMedCrossRefGoogle Scholar
  16. Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727PubMedCrossRefGoogle Scholar
  17. Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774PubMedCrossRefGoogle Scholar
  18. Chen Y-CS, McCormick S (1996) Sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122:3243–3253PubMedGoogle Scholar
  19. Chen Y, Yang X, He K, Liu M, Li J, Gao Z, Lin Z, Zhang Y, Wang X, Qiu X, Shen Y, Zhang L, Deng X, Luo J, Deng X, Chen Z, Gu H, Qu L (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124CrossRefGoogle Scholar
  20. Chen NZ, Zhang XQ, Wei PC, Chen QJ, Ren F, Chen J, Wang XC (2007) AtHAP3b plays a crucial role in the regulation of flowering time in Arabidopsis during osmotic stress. J Biochem Mol Biol 40:1083–1089PubMedCrossRefGoogle Scholar
  21. Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440PubMedCrossRefGoogle Scholar
  22. Cluis CP, Mouchel CF, Hardtke CS (2004) The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J 38:332–347PubMedCrossRefGoogle Scholar
  23. Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinform 4:25CrossRefGoogle Scholar
  24. de Folter S, Immink RGH, Kieffer M, Pařenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433PubMedCrossRefGoogle Scholar
  25. de Winde JH, Grivell LA (1993) Global regulation of mitochondrial biogenesis in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 46:51–91PubMedCrossRefGoogle Scholar
  26. Dinneny JR, Weigel D, Yanofsky MF (2006) NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development 133:1645–1655PubMedCrossRefGoogle Scholar
  27. Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124PubMedCrossRefGoogle Scholar
  28. Dupl’áková N, Reňák D, Hovanec P, Honysová B, Twell D, Honys D (2007) Arabidopsis Gene Family Profiler (aGFP)-user-oriented transcriptomic database with easy-to-use graphic interface. BMC Plant Biol 7:39PubMedCrossRefGoogle Scholar
  29. Durbarry A, Vizir I, Twell D (2005) Male germ line development in Arabidopsis duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiol 137:297–307PubMedCrossRefGoogle Scholar
  30. Edwards D, Murray JAH, Smith AG (1998) Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol 117:1015–1022PubMedCrossRefGoogle Scholar
  31. Feldmann KA, Coury DA, Christianson ML (1997) Exceptional segregation of a selectable marker (KanR) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics 47:1411–1422Google Scholar
  32. Feng XL, Ni WM, Elge S, Mueller-Roeber B, Xu ZH, Xue HW (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226PubMedCrossRefGoogle Scholar
  33. Ferrario S, Shchennikova AV, Franken J, Immink RGH, Angenent GC (2006) Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiol 140:890–898PubMedCrossRefGoogle Scholar
  34. Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10:1043–1054PubMedCrossRefGoogle Scholar
  35. Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013PubMedCrossRefGoogle Scholar
  36. Gallagher SR (1992) Quantitation of GUS activity by fluorometry. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, New York, pp 47–59Google Scholar
  37. Gibalová T, Reňák D, Matczuk K, Dupl’áková N, Cháb D, Twell D, Honys D (2009) AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol Biol 70:581–601PubMedCrossRefGoogle Scholar
  38. Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Phys 131:1855–1867CrossRefGoogle Scholar
  39. Grini PE, Schnittger A, Schwarz H, Zimmermann I, Schwab B, Jurgens G, Hulskamp M (1999) Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1. Genetics 151:849–863PubMedGoogle Scholar
  40. Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R, Roschitzki B, Basler K, Ahrens CH, Grossniklaus U (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 19:1786–1800PubMedCrossRefGoogle Scholar
  41. Grotewold E, Sainz MB, Tagliani L, Hernandez LM, Bowen B, Chandler VL (2000) Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. PNAS USA 97:13579–13584PubMedCrossRefGoogle Scholar
  42. Guiltinan MJ, Marcotte WR, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic response element. Science 250:267–271PubMedCrossRefGoogle Scholar
  43. Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21:2568–2569PubMedCrossRefGoogle Scholar
  44. Hafidh S, Čapková V, Honys D (2011) Safe keeping the message: mRNP complexes tweaking after transcription. Adv Exp Med Biol 722:118–136PubMedCrossRefGoogle Scholar
  45. Hall LN, Rossini L, Cribb L, Langdale JA (1998) GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cells 10:925–936Google Scholar
  46. Higginson T, Song F, Parish R (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35:177–192PubMedCrossRefGoogle Scholar
  47. Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450PubMedCrossRefGoogle Scholar
  48. Hong EH, Jeong YM, Ryu JY, Amasino RM, Noh B, Noh YS (2009) Temporal and spatial expression patterns of nine Arabidopsis genes encoding Jumonji C-domain proteins. Mol Cells 27:481–490PubMedCrossRefGoogle Scholar
  49. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652PubMedCrossRefGoogle Scholar
  50. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85PubMedCrossRefGoogle Scholar
  51. Honys D, Reňák D, Twell D (2006) Male gametophyte development and function. In: Floriculture, ornamental and plant biotechnology: advances and topical issues I. Global Science Books, UK, pp 76–87Google Scholar
  52. Honys D, Reňák D, Feciková J, Jedelský PL, Nebesářová J, Dobrev P, Čapková V (2009) Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J Proteome Res 8:2015–2031PubMedCrossRefGoogle Scholar
  53. Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, An G, Park PB (2010) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167:1512–1520PubMedCrossRefGoogle Scholar
  54. Howden R, Park SK, Moore JM, Orme J, Grossniklaus U, Twell D (1998) Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 14:621–631Google Scholar
  55. Hoyt MA (1997) Eliminating all obstacles: regulated proteolysis in the eukaryotic cell cycle. Cell 91:149–151PubMedCrossRefGoogle Scholar
  56. Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and required for pollen maturation. Plant Cell Physiol 3:1285–1292CrossRefGoogle Scholar
  57. Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Mayerowitz EM (2004) The homeotic protein AGAMOUS control microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360PubMedCrossRefGoogle Scholar
  58. Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562PubMedCrossRefGoogle Scholar
  59. Iven T, Strathmann A, Bottner S, Zwafink T, Heinekamp T, Guivarc’h A, Roitsch T, Droge-Laser W (2010) Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant J 63:155–166PubMedGoogle Scholar
  60. Jacoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann JJ, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111CrossRefGoogle Scholar
  61. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585PubMedCrossRefGoogle Scholar
  62. Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D (2004) Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–982PubMedCrossRefGoogle Scholar
  63. Kang SG, Price J, Lin PC, Hong JC, Jang JC (2010) The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. Mol Plant 3:361–373PubMedCrossRefGoogle Scholar
  64. Kapoor S, Takatsuji H (2006) Silencing of an anther-specific zinc-finger gene, MEZ1, causes aberrant meiosis and pollen abortion in petunia. Plant Mol Biol 6:415–430CrossRefGoogle Scholar
  65. Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in Petunia. Plant Cell 14:2353–2367PubMedCrossRefGoogle Scholar
  66. Kapushesky M, Kemmeren P, Culhane AC, Durinck S, Ihmels J, Krner C, Kull M, Torrente A, Sarkans U, Vilo J, Brazma A (2004) Expression profiler: next generation-an online platform for analysis of microarray data. Nucleic Acids Res 32:W465–W470 (Web Server issue)Google Scholar
  67. Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ (2008) The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228:709–723PubMedCrossRefGoogle Scholar
  68. Lago C, Clerici E, Dreni L, Horlow C, Caporali E, Colombo L, Kater MM (2005) The Arabidopsis TFIID factor AtTAF6 controls pollen tube growth. Dev Biol 285:91–100PubMedCrossRefGoogle Scholar
  69. Lai CP, Lee CL, Chen PH, Wu SH, Yang CC, Shaw JF (2004) Molecular analyses of the Arabidopsis TUBBY-like protein gene family. Plant Physiol 134:1586–1597PubMedCrossRefGoogle Scholar
  70. Lalanne E, Twell D (2002) Genetic control of male germ unit organization in Arabidopsis. Plant Physiol 129:865–875PubMedCrossRefGoogle Scholar
  71. Lalanne E, Michaelidis C, Moore JM, Gagliano W, Johnson A, Patel R, Howden R, Vielle-Calzada J-P, Grossniklaus U, Twell D (2004) Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics 167:1975–1986PubMedCrossRefGoogle Scholar
  72. Lee HS, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. PNAS 100:2152–2156PubMedCrossRefGoogle Scholar
  73. Li C, Wong WH (2001a) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. PNAS 98:31–36PubMedCrossRefGoogle Scholar
  74. Li C, Wong WH (2001b) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2 (research 0032.1-11)Google Scholar
  75. Li N, Yuan L, Liu N, Shi D, Li X, Tang Z, Liu J, Sundaresan V, Yang VC (2009) SLOW WALKER2, a NOC1/MAK21 homologue, is essential for coordinated cell cycle progression during female gametophyte development in Arabidopsis. Plant Physiol 151:1486–1497PubMedCrossRefGoogle Scholar
  76. Liu JX, Howell SH (2010) bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell 22:782–796PubMedCrossRefGoogle Scholar
  77. Lu F, Li B, Cui X, Liu C, Wang XJ, Cao X (2008) Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J Integr Plant Biol 50:886–896PubMedCrossRefGoogle Scholar
  78. Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615PubMedCrossRefGoogle Scholar
  79. Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487PubMedCrossRefGoogle Scholar
  80. Masiero S, Imbriano C, Ravasio F, Favaro R, Pelucchi N, Gorla MS, Mantovani R, Colombo L, Kater MM (2002) Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB. J Biol Chem 277:26429–26435PubMedCrossRefGoogle Scholar
  81. Milla MAR, Townsend J, Chang IF, Cushman JC (2006) The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Mol Biol 61:13–30PubMedCrossRefGoogle Scholar
  82. Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes redundantly facilitate anther development. Plant Cell 17:705–721PubMedCrossRefGoogle Scholar
  83. Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle KJ, Amasino RM, Noh YS (2004) Divergent roles of a pair of homologous Jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16:2601–2613PubMedCrossRefGoogle Scholar
  84. O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61:928–940PubMedCrossRefGoogle Scholar
  85. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y (2007) Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450:119–123PubMedCrossRefGoogle Scholar
  86. Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2004) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614CrossRefGoogle Scholar
  87. Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E (2006) AGRIS and AtRegNet: a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140:818–829PubMedCrossRefGoogle Scholar
  88. Parinov S, Sundaresan V (2000) Functional genetics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr Opin Biotechnol 11:157–161PubMedCrossRefGoogle Scholar
  89. Park SK, Howden R, Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen 1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125:3789–3799PubMedGoogle Scholar
  90. Park SK, Rahman D, Oh SA, Twell D (2004) Gemini pollen 2, a male and female gametophytic cytokinesis defective mutation. Sex Plant Reprod 17:63–70PubMedCrossRefGoogle Scholar
  91. Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756PubMedCrossRefGoogle Scholar
  92. Polit JT, Maszewski J, Kazmierczak A (2003) Effect of BAP and IAA on the expression of G1 and G2 control points and G1-S and G2-M transitions in root meristem cells of Vicia faba. Cell Biol Int 27:559–566PubMedCrossRefGoogle Scholar
  93. Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995PubMedCrossRefGoogle Scholar
  94. Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621PubMedCrossRefGoogle Scholar
  95. Rhee SY, Somerville CR (1998) Tetrad pollen formation in quarted mutants of Arabidipsis thaliana is associated with persistence of pectic polysaccharides of pollen mother cell wall. Plant J 15:79–88PubMedCrossRefGoogle Scholar
  96. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedCrossRefGoogle Scholar
  97. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110PubMedCrossRefGoogle Scholar
  98. Rossini L, Cribb L, Martin DJ, Langdale JA (2001) The Maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13:1231–1244PubMedCrossRefGoogle Scholar
  99. Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15:244–248PubMedCrossRefGoogle Scholar
  100. Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 248:23–32PubMedCrossRefGoogle Scholar
  101. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2His2-type zinc-finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. Plant Physiol 136:2734–2746PubMedCrossRefGoogle Scholar
  102. Schiefhaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organs development in Arabidodpsis thaliana. PNAS 96:11664–11669CrossRefGoogle Scholar
  103. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994PubMedCrossRefGoogle Scholar
  104. Shen Q, Zhang P, Ho THD (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119PubMedCrossRefGoogle Scholar
  105. Shigyo M, Hasebe M, Ito M (2006) Molecular evolution of the AP2 subfamily. Gene 366:256–265PubMedCrossRefGoogle Scholar
  106. Smyth DR, Bowman DL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767PubMedCrossRefGoogle Scholar
  107. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang PC, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid drought stress responses. Plant Cell 17:2384–2396PubMedCrossRefGoogle Scholar
  108. Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423PubMedCrossRefGoogle Scholar
  109. Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34:519–528PubMedCrossRefGoogle Scholar
  110. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456PubMedCrossRefGoogle Scholar
  111. Sun Q, Zhou D (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. PNAS 105:13679–13684PubMedCrossRefGoogle Scholar
  112. Takeda T, Amano K, Ohto MA, Nakamura K, Sato S, Kato T, Tabata S, Ueguchi C (2006) RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Mol Biol 61:165–177PubMedCrossRefGoogle Scholar
  113. Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770PubMedCrossRefGoogle Scholar
  114. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160PubMedCrossRefGoogle Scholar
  115. Twell D, Oh S-A, Honys D (2006) Pollen development, a genetic and transcriptomic view. In: Malho R (ed) The pollen tube: a cellular and molecular perspective, plant cell monographs, vol 3. Springer, Berlin, pp 15–45Google Scholar
  116. Verelst W, Twell D, de Folter S, Immink R, Saedler H, Münster T (2007) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8:R249PubMedCrossRefGoogle Scholar
  117. Veron AS, Kaufmann K, Bornberg-Bauer E (2007) Evidence of interaction network evolution by whole-genome duplication: a case study in MADS-box proteins. Mol Biol Evol 24:670–678PubMedCrossRefGoogle Scholar
  118. Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717PubMedCrossRefGoogle Scholar
  119. Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24PubMedCrossRefGoogle Scholar
  120. Wang D, Guo Y, Wu C, Yang G, Li Y, Zheng C (2008a) Geneome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genom 9:44CrossRefGoogle Scholar
  121. Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z, Wu W-H (2008b) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211PubMedCrossRefGoogle Scholar
  122. Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:1109–1128PubMedCrossRefGoogle Scholar
  123. Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885PubMedCrossRefGoogle Scholar
  124. Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schutze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Droge-Laser S (2009) Expression pattern within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol 69:107–119PubMedCrossRefGoogle Scholar
  125. Wenkel S, Turck F, Singer K, Gissot L, Gourrierec JL, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984PubMedCrossRefGoogle Scholar
  126. Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492PubMedCrossRefGoogle Scholar
  127. Wilson ZA, Marroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39PubMedCrossRefGoogle Scholar
  128. Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107PubMedCrossRefGoogle Scholar
  129. Yang M, Hu Y, Lodhi M, McCombie WR, Ma H (1999a) The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. PNAS 96:11416–11421PubMedCrossRefGoogle Scholar
  130. Yang WC, Ye D, Xu J, Sundaresan V (1999b) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117PubMedCrossRefGoogle Scholar
  131. Yang C, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19:3530–3548PubMedCrossRefGoogle Scholar
  132. Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM(DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095PubMedCrossRefGoogle Scholar
  133. Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538PubMedCrossRefGoogle Scholar
  134. Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22:672–689PubMedCrossRefGoogle Scholar
  135. Zhao DZ, Wang GF, Speal B, Ma H (2002) The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 6:2021–2031CrossRefGoogle Scholar
  136. Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12PubMedCrossRefGoogle Scholar
  137. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar
  138. Zou CS, Wenbo J, Diqiu Y (2010) Male gametophyte-specific WRKY34 transcriptional factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 61:3901–3914PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • David Reňák
    • 1
    • 2
  • Nikoleta Dupl’áková
    • 1
  • David Honys
    • 1
    • 3
    Email author
  1. 1.Laboratory of Pollen BiologyInstitute of Experimental Botany ASCRPrague 6Czech Republic
  2. 2.Department of Plant Physiology and Anatomy, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Department of Plant Experimental Biology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic

Personalised recommendations