Sexual Plant Reproduction

, Volume 24, Issue 3, pp 231–246 | Cite as

Characterization of retrotransposon sequences expressed in inflorescences of apomictic and sexual Paspalum notatum plants

  • Ana Claudia Ochogavía
  • José Guillermo Seijo
  • Ana María González
  • Maricel Podio
  • Erica Duarte Silveira
  • Ana Luiza Machado Lacerda
  • Vera Tavares de Campos Carneiro
  • Juan Pablo A. Ortiz
  • Silvina Claudia PessinoEmail author
Original Article


Apomixis, an asexual mode of reproduction through seeds, holds much promise for agricultural advances. However, the molecular mechanisms underlying this trait are still poorly understood. We previously isolated several transcripts representing novel sequences differentially expressed in reproductive tissues of sexual and apomictic plants. Here, we report the characterization of two of these unknown RNA transcripts (experimental codes N17 and N22). Since original fragments showed no significant homologies to sequences at databases, preliminary genomic PCR experiments were carried out to discard possible contaminations. RACE extension on flanking regions provided longer sequences for the candidates and additional related transcripts, which revealed similarity to LTR retrotransposons carrying short transduplicated segments of protein-coding genes. Interestingly, some transduplicated segments corresponded to genes previously associated with apomictic development. Gene copy number estimations revealed a moderate representation of the elements in the genome, with significantly increased numbers in a sexual genotype with respect to an apomictic one. Genetic mapping of N17 showed that a copy of this particular element was located onto Paspalum notatum linkage group F3c, at a central non-recombinant region resembling a centromere. Expression analysis showed an increased activity of N17 and N22 sense strands in ovules of the sexual genotypes. A retrotransposon-specific differential display analysis aimed at detecting related sequences allowed the identification of a complex family, with the majority of its members represented in the sexual genotype. Our results suggest that these elements could be participating in regulatory pathways related to apomixis and sexuality.


Apomixis Apospory Asexual reproduction Gene expression regulation Retrotransposon 



This work was supported by: Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Ministerio de Ciencia y Tecnología, Argentina, PICT 2007 00476 and PME-2006-03083; Centro Brasil-Argentina de Biotecnologia, Ministério da Ciência e Tecnologia, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CBAB-MCT-CNPq), Brasil, projeto 400753/2004-9; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, PIP 11220090100613; Universidad Nacional de Rosario, proyecto 19G/253 and ProSul (Programa Sudamericano de Apoyo a las Actividades de Cooperación en Ciencia y Tecnologia).


  1. Albertini E, Marconi G, Barcaccia G, Raggi L, Falcinelli M (2004) Isolation of candidate genes for apomixis in Poa pratensis. Plant Mol Biol 56:879–894PubMedCrossRefGoogle Scholar
  2. Albertini E, Marconi G, Reale L, Barcaccia G, Proceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART. Candidates genes for apomixis in Poa pratensis. Plant Physiol 138:2185–2199PubMedCrossRefGoogle Scholar
  3. Bashaw EC, Hovin AW, Holt EC (1970) Apomixis, its evolutionary significance and utilization in plant breeding. In: Norman MJT (ed) Proceedings of 11th international grasslands congress. University of Queensland Press, St. Lucía, pp 245–248Google Scholar
  4. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627PubMedCrossRefGoogle Scholar
  5. Burton GW (1946) Bahiagrass types. Agron J 38:273–281CrossRefGoogle Scholar
  6. Burton GW (1948) The method of reproduction in common Bahiagrass, Paspalum notatum. Agron J 40:443–452CrossRefGoogle Scholar
  7. Burton GW (1955) Breeding Pensacola bahiagrass Paspalum notatum: I. Method of reproduction. Agron J 47:311–314CrossRefGoogle Scholar
  8. Burton GW (1967) A search for the origin of Pensacola bahiagrass. Econ Bot 21:379–382CrossRefGoogle Scholar
  9. Capron A, Gourgues M, Neiva LS, Faure J-E, Berger F, Pagnussat G, Krishnan A, Alvarez-Mejia C, Vielle-Calzada J-P, Lee Y-R, Liu B, Sundaresan V (2008) Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–3049PubMedCrossRefGoogle Scholar
  10. Cervigni GD, Paniego N, Díaz M, Selva JP, Zappacosta D, Zanazzi D, Landerreche I, Martelotto L, Felitti S, Pessino S, Spangenberg G, Echenique V (2008) Expressed sequence tag analysis and development of associated markers in a near-isogenic plant system of Eragrostis curvula. Plant Mol Biol 67:7–10Google Scholar
  11. Chenchic A, Diachenko L, Moqadam F, Tarabykin V, Lukyanov S, Siebert PD (1996) Full-length cDNA cloning determination of mRNA 5 and 3 ends by amplification of adaptor-ligand cDNA. BioTechniques 21:526–534Google Scholar
  12. Crane C (2002) Classification of apomictic mechanisms. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, European Commission, DG VI, (FAIR), pp 24–34Google Scholar
  13. Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 244:189–199CrossRefGoogle Scholar
  14. Duarte Silveira E, Alves-Ferreira M, Arrais Guimarães L, Rodrigues da Silva F, Tavares de Campos Carneiro V (2009) Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biol 9:84. doi: 10.1186/1471-2229-9-84 CrossRefGoogle Scholar
  15. Durán-Figueroa N, Vielle-Calzada JP (2010) ARGONAUTE9-dependent silencing of transposable elements in pericentromeric regions of Arabidopsis. Plant Signal Behav 6(5):11Google Scholar
  16. Jarret RL, Ozias-Akins P, Phatak S, Nadimpalli R, Duncan R, Hiliard S (1995) DNA contents in Paspalum spp. determined by flow cytometry. Genet Resour Crop Evol 42:242–273CrossRefGoogle Scholar
  17. Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573PubMedCrossRefGoogle Scholar
  18. Jin Y-K, Bennetzen JL (1994) Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6:1177–1186PubMedCrossRefGoogle Scholar
  19. Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE (2005) The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 15:1292–1297PubMedCrossRefGoogle Scholar
  20. Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975–1985PubMedCrossRefGoogle Scholar
  21. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106PubMedCrossRefGoogle Scholar
  22. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  23. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  24. Laspina NV, Vega T, Martelotto L, Stein J, Podio M, Ortiz JP, Echenique V, Quarin C, Pessino SC (2008) Gene expression analysis at the onset of aposporous apomixes in immature inflorecences of Paspalum notatum. Plant Mol Biol 67:615–628PubMedCrossRefGoogle Scholar
  25. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971PubMedCrossRefGoogle Scholar
  26. Malik HS, Henikoff S, Eickbush TH (2000) Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10:1307–1318PubMedCrossRefGoogle Scholar
  27. Martínez EJ, Hopp E, Stein J, Ortiz JPA, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12(4):319–327CrossRefGoogle Scholar
  28. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002PubMedCrossRefGoogle Scholar
  29. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embriology of angiosperms. Springer, New York, pp 475–518Google Scholar
  30. Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632. doi: 10.1038/nature08828 PubMedCrossRefGoogle Scholar
  31. Ortiz JP, Pessino SC, Leblanc B, Hayward MD, Quarin CL (1997) Genetic fingerprint for determinig the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass. Theor Appl Genet 95:850–856CrossRefGoogle Scholar
  32. Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363PubMedCrossRefGoogle Scholar
  33. Pessino S, Martelotto L (2006) Genome structure and gene expression in polyploid plants. In: Teixeira da Silva JA (ed) Floriculture, ornamentals and plant biotechnology: advances and topical issues, 1st edn. Global Science Books, London, UKGoogle Scholar
  34. Polegri L, Calderini O, Arcioni S, Pupilli F (2010) Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. J Exp Bot 61:1869–1883PubMedCrossRefGoogle Scholar
  35. Quarin CL, Norrmann GA, Urbani MH (1989) Polyploidization in aposporous Paspalum species. Apomixis Newsletter 1:28–29Google Scholar
  36. Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Novo OA (2001) A rice of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249CrossRefGoogle Scholar
  37. Quarin CL, Urbani MH, Blount AR, Martinez EJ, Hack CM, Burton GW, Quesenberry KH (2003) Registration of Q4188 and Q4205, sexual tetraploid germplasm lines of Bahiagrass. Crop Sci 43:745–746CrossRefGoogle Scholar
  38. Rodrigues JC, Cabral GB, Dusi DMA, Mello LV, Rinden D, Carneiro VTC (2003) Identification of differentially expressed cDNA sequences in ovaries of sexual and apomictic plants of Brachiaria brizantha. Plant Mol Biol 53:745–757PubMedCrossRefGoogle Scholar
  39. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbour Press, New YorkGoogle Scholar
  40. Shagai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefGoogle Scholar
  41. Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development-virgin births in farmers’ fields? Nat Biotechnol 22:687–691PubMedCrossRefGoogle Scholar
  42. Stein J, Pessino SC, Martinez E, Quarin CL, Ortiz JP (2004) Tetraploid races of Paspalum notatum showed polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191PubMedCrossRefGoogle Scholar
  43. Stein J, Pessino S, Martinez E, Rodríguez MP, Siena L, Quarin C, Ortiz JP (2007) A genetic map of tetraploid Paspalum notatum Flügge (bahiagrass) based on single-dose molecular markers. Mol Breeding 20:153–166CrossRefGoogle Scholar
  44. Tischler CR, Burson BL (1995) Evaluating different bahiagrass cytotypes for heat tolerance and leaf epicuticular wax content. Euphytica 84:229–235CrossRefGoogle Scholar
  45. Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T (2009) Burst of retrotransposition reproduced in Arabidopsis. Nature 461:423–426PubMedCrossRefGoogle Scholar
  46. Yamada-Akiyama H, Akiyama Y, Ebina M, Xu Q, Tsuruta S, Yazaki J, Kishimoto N, Kikuchi S, Takahara M, Takamizo T, Sugita S, Nakagawa H (2009) Analysis of expressed sequence tags in apomictic Guinea grass (Panicum maximum). J Plant Physiol 166:750–761PubMedCrossRefGoogle Scholar
  47. Yang L, Bennetzen JL (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. PNAS 106(47):19922–19927PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ana Claudia Ochogavía
    • 1
  • José Guillermo Seijo
    • 2
  • Ana María González
    • 2
  • Maricel Podio
    • 1
    • 2
  • Erica Duarte Silveira
    • 3
  • Ana Luiza Machado Lacerda
    • 3
  • Vera Tavares de Campos Carneiro
    • 3
  • Juan Pablo A. Ortiz
    • 1
    • 2
  • Silvina Claudia Pessino
    • 1
    Email author
  1. 1.Laboratorio Central de Investigaciones, Facultad de Ciencias AgrariasUniversidad Nacional de RosarioSanta FeArgentina
  2. 2.Instituto de Botánica del Nordeste IBONE-CONICETUniversidad Nacional del NordesteCorrientesArgentina
  3. 3.Embrapa Recursos Genéticos e BiotecnologiaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations