Sexual Plant Reproduction

, Volume 24, Issue 3, pp 219–229 | Cite as

Female gametophyte development and double fertilization in Balsas teosinte, Zea mays subsp. parviglumis (Poaceae)

  • Chi-Chih Wu
  • Pamela K. Diggle
  • William E. FriedmanEmail author
Original Article


Over the course of maize evolution, domestication played a major role in the structural transition of the vegetative and reproductive characteristics that distinguish it from its closest wild relative, Zea mays subsp. parviglumis (Balsas teosinte). Little is known, however, about impacts of the domestication process on the cellular features of the female gametophyte and the subsequent reproductive events after fertilization, even though they are essential components of plant sexual reproduction. In this study, we investigated the developmental and cellular features of the Balsas teosinte female gametophyte and early developing seed in order to unravel the key structural and evolutionary transitions of the reproductive process associated with the domestication of the ancestor of maize. Our results show that the female gametophyte of Balsas teosinte is a variation of the Polygonum type with proliferative antipodal cells and is similar to that of maize. The fertilization process of Balsas teosinte also is basically similar to domesticated maize. In contrast to maize, many events associated with the development of the embryo and endosperm appear to be initiated earlier in Balsas teosinte. Our study suggests that the pattern of female gametophyte development with antipodal proliferation is common among species and subspecies of Zea and evolved before maize domestication. In addition, we propose that the relatively longer duration of the free nuclear endosperm phase in maize is correlated with the development of a larger fruit (kernel or caryopsis) and with a bigger endosperm compared with Balsas teosinte.


Balsas teosinte Maize Corn Female gametophyte Embryogenesis Heterochrony 



We thank Julien Bachelier for his helpful suggestions toward the improvement of the manuscript. This work was supported by grants from the Department of Ecology and Evolutionary Biology, University of Colorado.


  1. Adams JD, Mackay E (1953) Observing pollen tubes within the styles of Zea mays L. Biotech Histochem 28:295–298CrossRefGoogle Scholar
  2. Anton AM, Cocucci AE (1984) The grass megagametophyte and its possible phylogenetic implications. Pl Syst Evol 146:117–121CrossRefGoogle Scholar
  3. Bedinger P, Russell SD (1994) Gametogenesis in maize. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 48–64Google Scholar
  4. Benz BF, Iltis HH (1992) Evolution of female sexuality in the maize ear (Zea mays L. subsp. mays—Gramineae). Econ Bot 46:212–222CrossRefGoogle Scholar
  5. Bhanwra RK, Pathak P (1987) Embryology of Apluda mutica (Poaceae). Proc Indian Acad Sci (Plant Sci) 97:461–467Google Scholar
  6. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) Ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585PubMedCrossRefGoogle Scholar
  7. Buckler ES, Holtsford TP (1996) Zea systematics: ribosomal ITS evidence. Mol Biol Evol 13:612–622PubMedGoogle Scholar
  8. Burson BL, Voigt PW, Sherman RA (1990) Apomixis and sexuality in Eastern Gamagrass. Crop Sci 30:86–89CrossRefGoogle Scholar
  9. Choda SP, Mitter H, Bhanwra RK (1982) Embryological studies in three species of Cymbopogon Spreng (Poaceae). Proc Indian Acad Sci (Plant Sci) 91:55–60Google Scholar
  10. Clore AM, Dannenhoffer JM, Larkins BA (1996) EF-1α is associated with a cytoskeletal network surrounding protein bodies in maize endosperm cells. Plant Cell 8:2003–2014PubMedCrossRefGoogle Scholar
  11. Cooper DC (1937) Macrosporogenesis and embryo-sac development in Euchlaena mexicana and Zea mays. J Agric Res 55:539–551Google Scholar
  12. Cooper DC (1951) Caryopsis development following matings between diploid and tetraploid strains of Zea mays. Am J Bot 38:702–708CrossRefGoogle Scholar
  13. Dermastia M, Kladnik A, Dolenc Koce J, Chourey PS (2009) A cellular study of teosinte Zea mays subsp. parviglumis (Poaceae) caryopsis development showing several processes conserved in maize. Am J Bot 96:1798–1807PubMedCrossRefGoogle Scholar
  14. Diboll AG (1968) Fine structural development of the megagametophyte of Zea mays following fertilization. Am J Bot 55:797–806CrossRefGoogle Scholar
  15. Diboll AG, Larson DA (1966) An electron microscopic study of the mature megagametophyte in Zea mays. Am J Bot 53:391–402PubMedCrossRefGoogle Scholar
  16. Doebley JF (1990a) Molecular evidence and the evolution of maize. Econ Bot 44:6–27CrossRefGoogle Scholar
  17. Doebley JF (1990b) Molecular systematics of Zea (Gramineae). Maydica 35:143–150Google Scholar
  18. Doebley JF (2003) The taxonomy of Zea. Accessed 04 Nov 2010
  19. Doebley JF (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59PubMedCrossRefGoogle Scholar
  20. Doebley JF, Iltis HH (1980) Taxonomy of Zea (Gramineae). I. A subgeneric classification with key to taxa. Am J Bot 67:982–993CrossRefGoogle Scholar
  21. Doebley JF, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295PubMedGoogle Scholar
  22. Doebley JF, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346PubMedGoogle Scholar
  23. Doebley JF, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedCrossRefGoogle Scholar
  24. Dorweiler JE, Doebley JF (1997) Developmental analysis of teosinte glume architecture1: a key locus in the evolution of maize (Poaceae). Am J Bot 84:1313–1322PubMedCrossRefGoogle Scholar
  25. Dorweiler JE, Stec A, Kermicle J, Doebley JF (1993) Teosinte glume architecture1: a genetic locus controlling a key step in maize evolution. Science 262:233–235PubMedCrossRefGoogle Scholar
  26. Doust A (2007) Architectural evolution and its implications for domestication in grasses. Ann Bot 100:941–950PubMedCrossRefGoogle Scholar
  27. Evans MMS, Grossniklaus U (2009) The maize megagametophyte. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, New York, pp 79–104CrossRefGoogle Scholar
  28. Folsom MW, Peterson CM (1984) Ultrastructural aspects of the mature embryo sac of soybean. Glycine max (L.) Merr Bot Gaz 145:1–10Google Scholar
  29. Galinat WC (1985) The missing links between teosinte and maize: a review. Maydica 30:137–160Google Scholar
  30. Gallavotti A, Long JA, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt R (2010) The control of axillary meristem fate in the maize ramose pathway. Development 137:2849–2856PubMedCrossRefGoogle Scholar
  31. Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131:1661–1670PubMedCrossRefGoogle Scholar
  32. Hector JM (1936) Introduction to the botany of field crops vol I—Cereals. Central News Agency Ltd., JohannesburgGoogle Scholar
  33. Heo K, Kimoto Y, Riveros M, Tobe H (2004) Embryology of Gomortegaceae (Laurales): characteristics and character evolution. J Plant Res 117:221–228PubMedCrossRefGoogle Scholar
  34. Heslop-Harrison Y, Heslop-Harrison J, Reger BJ (1985) The pollen-stigma interaction in the grass. 7. Pollen-tube guidance and the regulation of pollen number in Zea mays L. Acta Bot Neerl 34:193–211Google Scholar
  35. Huang BQ, Sheridan WF (1994) Female gametophyte development in maize: microtubular organization and embryo sac polarity. Plant Cell 6:845–861PubMedCrossRefGoogle Scholar
  36. Iltis HH (2000) Homeotic sexual translocations and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ Bot 54:7–42CrossRefGoogle Scholar
  37. Iltis HH, Benz BF (2000) Zea nicaraguensis (Poaceae), a new teosinte from Pacific Coastal Nicaragua. Novon 10:382–390CrossRefGoogle Scholar
  38. Iltis HH, Doebley JF (1980) Taxonomy of Zea (Gramineae). II. Subspecific categories in the Zea mays complex and a generic synopsis. Am J Bot 67:994–1004CrossRefGoogle Scholar
  39. Jensen WA (1965) The ultrastructure and composition of the egg and central cell of cotton. Am J Bot 52:781–797CrossRefGoogle Scholar
  40. Johann H (1935) Histology of the caryopsis of yellow dent corn, with reference to resistance and susceptibility to kernel rots. J Agric Res 51:855–883Google Scholar
  41. Kato A (1990) Heterofertilization exhibited by using highly haploid inducing line “Stock 6” and supplementary cross. Maize Genet Coop Newsl 64:109–110Google Scholar
  42. Kato A (2001) Heterofertilization exhibited by trifluralin-induced bicellular pollen on diploid and tetraploid maize crosses. Genome 44:1114–1121PubMedCrossRefGoogle Scholar
  43. Kiesselbach TA (1980) The structure and reproduction of corn. University of Nebraska, LincolnGoogle Scholar
  44. Kimoto Y, Tobe H (2001) Embryology of Laurales: a review and perspectives. J Plant Res 114:247–267CrossRefGoogle Scholar
  45. Kimoto Y, Tobe H (2003) Embryology of Siparunaceae (Laurales): characteristics and character evolution. J Plant Res 116:281–294PubMedCrossRefGoogle Scholar
  46. Kliwer I, Dresselhaus T (2010) Establishment of the male germline and sperm cell movement during pollen germination and tube growth in maize. Plant Signal Behav 5:885–889PubMedCrossRefGoogle Scholar
  47. Knowles RV, Phillips RL (1988) Endosperm development in maize. Int Rev Cytol 112:97–136CrossRefGoogle Scholar
  48. Koul AD (1959) Antipodals during the development of caryopsis in Euchlaena mexicana. Agra Univ J Res 8:31–33Google Scholar
  49. Kraptchev B, Kruleva M, Dankov T (2003) Induced heterofertilization in maize (Zea mays L.). Maydica 48:271–274Google Scholar
  50. Lausser A, Kliwer I, Srilunchang KO, Dresselhaus T (2010) Sporophytic control of pollen tube growth and guidance in maize. J Exp Bot 61:673–682PubMedCrossRefGoogle Scholar
  51. Leblanc O, Peel MD, Carman JG, Savidan Y (1995) Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). Am J Bot 82:57–63CrossRefGoogle Scholar
  52. Lora J, Hormaza JI, Herrero M (2010) The progamic phase of an early-divergent angiosperm, Annona cherimola (Annonaceae). Ann Bot 105:221–231PubMedCrossRefGoogle Scholar
  53. Lovisolo MR, Galati BG (2007) Ultrastructure and development of the megagametophyte in Eleusine tristachya (Lam.) Lam. (Poaceae). Flora 202:293–301Google Scholar
  54. Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536PubMedCrossRefGoogle Scholar
  55. Martin JN (1914) Comparative morphology of some Leguminosae. Bot Gaz 58:154–167CrossRefGoogle Scholar
  56. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley JF (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084PubMedCrossRefGoogle Scholar
  57. Moco MCC, Mariath JEA (2004) Female gametophyte development in Adesmia latifolia (Spreng.) Vog. (Leguminosae-Papilionoideae). Rev Brasil Bot 27:241–248CrossRefGoogle Scholar
  58. Mol R, Matthys-Rochon E, Dumas C (1994) The kinetics of cytological events during double fertilization in Zea mays L. Plant J 5:197–206CrossRefGoogle Scholar
  59. Ohto M, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289PubMedCrossRefGoogle Scholar
  60. Orr AR, Sundberg MD (1994) Inflorescence development in a perennial teosinte: Zea perennis (Poaceae). Am J Bot 81:598–608CrossRefGoogle Scholar
  61. Orr AR, Sundberg MD (2007) Inflorescence development in the teosinte Zea luxurians (Poaceae) and implication for the origin of maize inflorescences. Maydica 52:31–47Google Scholar
  62. Pennington PD, Costa LM, Gutierrez-Marcos JF, Greenland AJ, Dickinson HG (2008) When genomes collide: aberrant seed development following maize interploidy crosses. Ann Bot 101:833–843PubMedCrossRefGoogle Scholar
  63. Phillips KA, Skirpan AL, Kaplinsky NJ, McSteen P (2009) Developmental disaster1: a novel mutation causing defects during vegetative and inflorescence development in maize (Zea mays, Poaceae). Am J Bot 96:420–430PubMedCrossRefGoogle Scholar
  64. Randolph LF (1936) Developmental morphology of the caryopsis in maize. J Agric Res 53:881–916Google Scholar
  65. Reed EL (1924) Anatomy, embryology, and ecology of Arachis hypogea. Bot Gaz 78:289–310CrossRefGoogle Scholar
  66. Rotarenco V, Eder J (2003) Possible effects of heterofertilization on the induction of maternal haploids in maize. Maize Genet Coop Newsl 77:30Google Scholar
  67. Sajo MG, Longhi-Wagner HM (2008) Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet. Plant Syst Evol 275:245–255CrossRefGoogle Scholar
  68. Sajo MG, Longhi-Wagner HM, Rudall PJ (2007) Floral development and embryology in the early-divergent grass Pharus. Int J Plant Sci 168:181–191CrossRefGoogle Scholar
  69. Satyamurty TVC (1984) Development of the caryopsis in Chionachne koenigii Linn. Plant Sci 93:567–570Google Scholar
  70. Schulz P, Jensen WA (1973) Capsella embryogenesis: the central cell. J Cell Sci 12:741–763PubMedGoogle Scholar
  71. Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341PubMedGoogle Scholar
  72. Sehgal CB, Gifford EM (1979) Developmental and histochemical studies of the ovules of Nicotiana rustica L. Bot Gaz 140:180–188CrossRefGoogle Scholar
  73. Sigmon B, Vollbrecht E (2010) Evidence of selection at the ramosa1 locus during maize domestication. Mol Ecol 19:1296–1311PubMedCrossRefGoogle Scholar
  74. Smith BW (1956) Arachis hypogaea. Normal megasporogenesis and syngamy with occasional single fertilization. Am J Bot 43:81–89CrossRefGoogle Scholar
  75. Sprague GF (1929) Hetero-fertilization in maize. Science 69:526–527PubMedCrossRefGoogle Scholar
  76. Sprague GF (1932) The nature and extent of hetero-fertilization in maize. Genetics 17:358–368PubMedGoogle Scholar
  77. Stover EL (1937) The embryo sac of Eragrostis cilianensis (All.) Link. Ohio J Sci 37:172–184Google Scholar
  78. Streetman LJ (1963) Reproduction of the lovegrasses, the genus Eragrostis—I. E. chloromelas Steud., E. curvula (Schrad.) Nees, E. lehmanniana Nees, and E. superba Peyr. Wrightia 3:41–51Google Scholar
  79. Styles ED (1987) Pollen tube growth in maize. Maydica 32:139–150Google Scholar
  80. Suen DF, Huang AH (2007) Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction. J Biol Chem 282:625–636PubMedCrossRefGoogle Scholar
  81. Sundberg MD, Orr AR (1990) Inflorescence development in two annual teosintes: Zea mays subsp. mexicana and Z. mays subsp. parviglumis. Am J Bot 77:141–152CrossRefGoogle Scholar
  82. Sundberg MD, LaFargue C, Orr AR (1995) Inflorescence development in the “standard exotic” maize, argentine popcorn (Poaceae). Am J Bot 82:64–74CrossRefGoogle Scholar
  83. Thompson BE, Bartling L, Whipple C, Hall DH, Sakai H, Schmidt R, Hake S (2009) Bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell 21:2578–2590PubMedCrossRefGoogle Scholar
  84. Torosian C (1972) Ultrastructural and histochemical studies of endosperm differentiation in Lobelia dunnii. Ph.D. Dissertation, University of California, BerkeleyGoogle Scholar
  85. USDA, ARS, National Genetic Resources Program (2010) Germplasm resources information network—(GRIN). [Online database] National germplasm resources laboratory, Beltsville, Maryland. Accessed 19 Dec 2010
  86. Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126PubMedCrossRefGoogle Scholar
  87. Weber AL, Briggs WH, Rucker J, Baltazar BM, de Jesús Sánchez-Gonzalez J, Feng P, Buckler ES, Doebley JF (2008) The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping. Genetics 180:1221–1232PubMedCrossRefGoogle Scholar
  88. Whipple CJ, Schmidt RJ (2006) Genetics of grass flower development. Adv Bot Res 44:385–424CrossRefGoogle Scholar
  89. Williams JH (2008) Novelties of the flowering plant pollen tube underlie diversification of a key life history stage. Proc Natl Acad Sci USA 105:11259–11263PubMedCrossRefGoogle Scholar
  90. Yan H, Yang HY, Jensen WA (1991) Ultrastructure of the developing embryo sac of sunflower (Helianthus annuus) before and after fertilization. Can J Bot 69:191–202CrossRefGoogle Scholar
  91. You R, Jensen WA (1985) Ultrastructural observations of the mature megagametophyte and the fertilization in wheat (Triticum aestivum). Can J Bot 63:163–178CrossRefGoogle Scholar
  92. Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M (2009) SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 21:106–117PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Chi-Chih Wu
    • 1
  • Pamela K. Diggle
    • 1
  • William E. Friedman
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  2. 2.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  3. 3.Arnold Arboretum of Harvard UniversityBostonUSA

Personalised recommendations