Skip to main content
Log in

Polycomb group gene function in sexual and asexual seed development in angiosperms

  • Review
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

In sexually reproducing angiosperms, double fertilization initiates seed development, giving rise to two fertilization products, the embryo and the endosperm. In the endosperm, a terminal nutritive tissue that supports embryo growth, certain genes are expressed differentially depending on their parental origin, and this genomic imbalance is required for proper seed formation. This parent-of-origin effect on gene expression, called genomic imprinting, is controlled epigenetically through histone modifications and DNA methylation. In the sexual model plant Arabidopsis, the Polycomb group (PcG) genes of the plant Fertilization Independent Seed (FIS)-class control genomic imprinting by specifically silencing maternal or paternal target alleles through histone modifications. Mutations in FIS genes can lead to a bypass in the requirement of fertilization for the initiation of endosperm development and seed abortion. In this review, we discuss the role of the FIS complex in establishing and maintaining genomic imprinting, focusing on recent advances in elucidating the expression and function of FIS-related genes in maize, rice, and Hieracium, and particularly including apomictic Hieracium species that do not require paternal contribution and thus form seeds asexually. Surprisingly, not all FIS-mediated functions described in Arabidopsis are conserved. However, the function of some PcG components are required for viable seed formation in seeds formed via sexual and asexual processes (apomixis) in Hieracium, suggesting a conservation of the seed viability function in some eudicots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berger F, Chaudhury A (2009) Parental memories shape seeds. Trends Plant Sci 14:550–556

    Article  PubMed  CAS  Google Scholar 

  • Berger F, Fitz Gerald JN, Ingouff M (2007) Arabidopsis as a model for understanding basics of endosperm development. Plant Cell Monogr 8:91–110

    Article  CAS  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:S228–S245

    Article  PubMed  CAS  Google Scholar 

  • Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of expression of the HISTONE:YFP fusion protein in Arabidopsis shows that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–507

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in PcG-group silencing. Science 298:1039–1043

    Article  PubMed  CAS  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103:18650–18655

    Article  PubMed  CAS  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228

    Article  PubMed  CAS  Google Scholar 

  • Choi YH, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    Article  PubMed  CAS  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal PcG sites. Cell 111:185–196

    Article  PubMed  CAS  Google Scholar 

  • Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV (2003) Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell 14:1–14

    Google Scholar 

  • Dobeš C, Mitchell-Olds T, Koch MA (2004) Intraspecific diversification in North American Boechera stricta (=Arabis drummondii), Boechera × divaricarpa, and Boechera holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers—an integrative approach. Am J Bot 91:2087–2101

    Article  Google Scholar 

  • Ebel C, Mariconti L, Gruissem W (2004) Plant retinoblastoma homolgues control nuclear proliferation in the female gametophyte. Nature 429:776–780

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Berger F (2007) Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 23:192–199

    Article  PubMed  CAS  Google Scholar 

  • Fitz Gerald JN, Hui PS, Berger F (2009) Polycomb group-dependent imprinting of the actin regulator AtFH5 regulates morphogenesis in Arabidopsis thaliana. Development 136:3399–3404

    Article  PubMed  CAS  Google Scholar 

  • Gehring M, Choi Y, Fischer RL (2004) Imprinting and seed development. Plant Cell 16:S203–S213

    Article  PubMed  CAS  Google Scholar 

  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA PcG gene self-imprinting by allele-specific demethylation. Cell 124:495–506

    Article  PubMed  CAS  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535

    Article  PubMed  CAS  Google Scholar 

  • Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450

    Article  PubMed  CAS  Google Scholar 

  • Guitton AE, Berger F (2005) Loss-of-function of MULTICOPY SUPPRESSOR OF IRA 1 produces non-viable parthenogenetic embryos in Arabidopsis. Curr Biol 15:750–754

    Article  PubMed  CAS  Google Scholar 

  • Guitton A, Page D, Chambrier P, Lionnet C, Faure J, Grossniklaus U, Berger F (2004) Identification of new members of fertilization independent seed polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971–2981

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos JF, Costa LM, Pra MD, Scholten S, Kranz E, Perez P, Dickinson HG (2006) Epigenetic asymmetry of imprinted genes in plant gametes. Nature Genet 38:876–878

    Article  PubMed  CAS  Google Scholar 

  • Haun WJ, Laoueillé-Duprat S, O’Connell MJ, Spillane C, Grossniklaus U, Phillips AR, Kaeppler SM, Springer NM (2007) Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant J 49:325–337

    Article  PubMed  CAS  Google Scholar 

  • Haun WJ, Danilevskaya ON, Meeley RB, Springer NM (2009) Disruption of imprinting by mutator transposon insertions in the 5′ proximal regions of the Zea mays Mez1 locus. Genetics 181:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Ingouff M, Haseloff J, Berger F (2005) Polycomb group genes control developmental timing of endosperm. Plant J 42:663–674

    Article  PubMed  CAS  Google Scholar 

  • Ingouff M, Jullien P, Berger F (2006) The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell 18:3491–3501

    Article  PubMed  CAS  Google Scholar 

  • Jahnke S, Scholten S (2009) Epigenetic resetting of a gene imprinted in plant embryos. Curr Biol 19:1677–1681

    Article  PubMed  CAS  Google Scholar 

  • Johnston AJ, Matveeva E, Kirioukhova O, Grossniklaus U, Gruissem W (2008) A dynamic reciprocal RBR-PRC2 regulatory circuit controls Arabidopsis gametophyte development. Curr Biol 18:1680–1686

    Article  PubMed  CAS  Google Scholar 

  • Josefson C, Dilkes B, Comai L (2006) Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 16:1322–1328

    Article  CAS  Google Scholar 

  • Jullien PE, Berger F (2009) Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr Opin Plant Biol 12:637–642

    Article  PubMed  CAS  Google Scholar 

  • Jullien P, Katz A, Oliva M, Ohad N, Berger F (2006a) Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol 16:486–494

    Article  PubMed  CAS  Google Scholar 

  • Jullien P, Kinoshita T, Ohad N, Berger F (2006b) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18:1360–1372

    Article  PubMed  CAS  Google Scholar 

  • Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F (2008) Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. Plos Biology 6:e94

    Article  CAS  Google Scholar 

  • Katz A, Oliva M, Mosquna A, Hakim O, Ohad N (2004) FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J 37:707–719

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 10:1945–1952

    Article  Google Scholar 

  • Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB, Fischer RL (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 96:4186–4191

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Henning L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003a) Arabidopsis MSI1 is a component of the MEA/FIE polycomb group complex and required for seed development. EMBO J 22:4804–4814

    Article  PubMed  Google Scholar 

  • Köhler C, Henning L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003b) The polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Devel 17:1540–1553

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Page DR, Gagliardini V, Grossniklaus U (2005) The Arabidopsis thaliana MEDEA polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 37:28–30

    PubMed  Google Scholar 

  • Koltunow A, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo J-S, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864

    Article  PubMed  CAS  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16:2893–2905

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97:10637–10642

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Platten D, Chaudhury AM, Peacock WJ, Dennis ES (2009) Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Mol Plant 2:711–723

    Article  PubMed  CAS  Google Scholar 

  • Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O, Goodrich J, Grossniklaus U, Köhler C (2006) Different polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7:947–952

    Article  PubMed  CAS  Google Scholar 

  • Makarevich G, Villar CB, Erilova A, Kohler C (2008) Mechanism of PHERES1 imprinting in Arabidopsis. J Cell Sci 121:906–912

    Article  PubMed  CAS  Google Scholar 

  • Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila PcG group repressor complex. Cell 111:197–208

    Article  PubMed  Google Scholar 

  • Nowack MK, Shirzadi R, Dissmeyer N, Dolf A, Endl E, Grini PE, Schnittger A (2007) Bypassing genomic imprinting allows seed development. Nature 447:312–315

    Article  PubMed  CAS  Google Scholar 

  • Ohad N (2007) Plant development: parental conflict overcome. Nature 447:275–276

    Article  PubMed  CAS  Google Scholar 

  • Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:5319–5324

    Article  PubMed  CAS  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–415

    Article  PubMed  CAS  Google Scholar 

  • Olsen O (2005) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214–S227

    Article  Google Scholar 

  • Rodrigues JCM, Tucker MR, Johnson SD, Hrmova M, Koltunow AMG (2008) Sexual and apomictic seed formation in Hieracium requires the plant polycomb-group gene FERTILIZATION INDEPENDENT ENDOSPERM. Plant Cell 20:2372–2386

    Article  PubMed  CAS  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2008) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745

    Article  CAS  Google Scholar 

  • Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8:9–22

    Article  PubMed  CAS  Google Scholar 

  • Sharbel TF, Voigt ML, Corral JM, Thiel T, Varshney A, Kumlehn J, Vogel H, Rotter B (2009) Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. Plant J 58:870–882

    Article  PubMed  CAS  Google Scholar 

  • Sørensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jürgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567–5576

    Article  PubMed  CAS  Google Scholar 

  • Spielman M, Vinkenoog R, Scott RJ (2003) Genetic mechanisms of apomixis. Phil Trans Roy Soc Lond Ser B: Biol Sci 358:1095–1103

    Article  CAS  Google Scholar 

  • Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187

    Article  Google Scholar 

  • Spillane C, Schmid KJ, Laoueillé-Duprat S, Pien S, Escobar-Restrepo JM, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U (2007) Positive Darwinian selection at the imprinted MEDEA locus in plants. Nature 448:349–352

    Article  PubMed  CAS  Google Scholar 

  • Tucker M, Guerra A, Paech N, Hecht V, Schmidt E, Rossell J, Vries S, Koltunow A (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537

    Article  PubMed  CAS  Google Scholar 

  • Vielle-Calzada JP, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U (1999) Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev 13:2971–2982

    Article  PubMed  CAS  Google Scholar 

  • Villar CB, Erilova A, Makarevich G, Trösch R, Köhler C (2009) Control of PHERES1 imprinting in Arabidopsis by direct tandem repeats. Mol Plant 2:654–660

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Tyson MD, Jackson SS, Yadegari R (2006) Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proc Natl Acad Sci USA 103:13244–13249

    Article  PubMed  CAS  Google Scholar 

  • Whitcomb SJ, Basu A, Allis CD, Bernstein E (2007) Polycomb group proteins: an evolutionary perspective. Trends Genet 23:494–502

    Article  PubMed  CAS  Google Scholar 

  • Wood C, Robertson M, Tanner G, Peacock W, Dennis E, Helliwell C (2006) The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA 103:14631–14636

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Gehring M, Choi Y, Margossian L, Pu H, Harada J, Goldberg R, Pennell R, Fischer R (2003) Imprinting of the MEA polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 5:891–901

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhong L, Wu X, Fang X, Wang J (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta 229:471–483

    Article  PubMed  CAS  Google Scholar 

  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, Ohad N (2000) Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12:2367–2381

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung ZR, Takahashi S (2001) EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13:2471–2481

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio C. M. Rodrigues.

Additional information

Communicated by Ueli Grossniklaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, J.C.M., Luo, M., Berger, F. et al. Polycomb group gene function in sexual and asexual seed development in angiosperms. Sex Plant Reprod 23, 123–133 (2010). https://doi.org/10.1007/s00497-009-0131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-009-0131-2

Keywords

Navigation