Sexual Plant Reproduction

, Volume 23, Issue 1, pp 45–51 | Cite as

Physical mapping of rDNA genes corroborates allopolyploid origin in apomictic Brachiaria brizantha

  • Stephan Nielen
  • Lucas M. Almeida
  • Vera T. C. Carneiro
  • Ana Claudia G. Araujo
Short Communication

Abstract

Brachiaria (Trin.) Griseb belongs to the family Poaceae, and within the genus, apomixis or sexuality is present in different accessions of the same species. The majority of Brachiaria species are polyploid and apomictic, making strategies for crop improvement by breeding very intricate. In spite of the high frequency of apomictic polyploids, the relationship of polyploidy and hybridization with apomixis in Brachiaria is still unclear. Further analysis requires detailed knowledge regarding the genomic composition of the polyploids. The present work introduces the use of fluorescent in situ hybridization (FISH) into cytogenetic analysis of Brachiaria. Physical mapping of heterologous rDNA sequences, associated with conventional karyotyping of the B. brizantha diploid sexual (BRA 002747) and the tetraploid apomictic (BRA000591) accessions, provided evidence of the latter being of allopolyploid origin. Based on our results and on previous knowledge on apomixis in B. brizantha, we suggest that the origin of apomixis was probably a consequence of hybridization.

Keywords

Allopolyploid Apomixis Chromosomes Cytogenetics FISH Hybridization 

References

  1. Araujo ACG, Nóbrega JM, Pozzobon MT, Carneiro VTC (2005) Evidence of sexuality in induced tetraploids of Brachiaria brizantha (Poaceae). Euphytica 144:39–50CrossRefGoogle Scholar
  2. Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca RatonGoogle Scholar
  3. Basappa GP, Muniyamma M, Chinnappa CC (1987) An investigation of chromosome numbers in the genus Brachiaria (Poaceae: Paniceae) in relation to morphology and taxonomy. Can J Bot 65:2297–2309CrossRefGoogle Scholar
  4. Bernini CJ (1997) Análise citogenética e diferenciação cromossômica em espécies do gênero Brachiaria Grisebach. University of Londrina, Londrina-PRGoogle Scholar
  5. Bernini C, Marin-Morales MA (2001) Karyotype analysis in Brachiaria (Poaceae) species. Cytobios 104:157–171PubMedGoogle Scholar
  6. Boldrini KR, Pagliarini MS, CBd Valle (2006) Abnormal timing of cytokinesis in microsporogenesis in Brachiaria humidicola (Poaceae: Paniceae). J Genet 85:225–228CrossRefPubMedGoogle Scholar
  7. Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biolog J Linnean Soc 61:51–94CrossRefGoogle Scholar
  8. Carman JG (2001) The gene effect: genome collisions and apomixis. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT. IRS, Eur Comm, Mexico, pp 95–110Google Scholar
  9. Carman JG (2007) Do duplicate genes cause apomixis? In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. A.R.G. Gantner Verlag, Rugell, Liechtenstein, pp 63–92Google Scholar
  10. Carnahan HL, Hill HD (1961) Apomixis in the Gramineae: Panicoideae. Am J Bot 54:253–263Google Scholar
  11. Christopher J, Abrahan A (1976) Studies on the cytology and phylogeny of south Indian grasses. III. Subfamily V, Panicoidea; tribe (i) the Paniceae. Cytologia 41:621–637Google Scholar
  12. Dujardin M (1979) Additional chromosome numbers and meiotic behavior in tropical African grasses from western Zaire. Can J Bot 57:864–876CrossRefGoogle Scholar
  13. Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikoskopischen Präparaten. Z Physiol Chem 135:203–248Google Scholar
  14. Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876CrossRefPubMedGoogle Scholar
  15. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedGoogle Scholar
  16. Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contains 5S rRNA genes. Nucleic Acids Res 8:4851–4865CrossRefPubMedGoogle Scholar
  17. Gobbe J, Swenne A, Louant B-P (1981) Diploïdes naturels et autotetraploïdes induits chez Brachiaria ruziziensis Germain et Evrard: critères d’identification. Agro Topic 36:339–346Google Scholar
  18. Gobbe J, Longly B, Louant BP (1982) Calendrier des sporogénèse et gametogénèse femelles chez le diploïde et le tetraploïde induit de Brachiaria rhuziziensis (Graminée). Can J Bot 60:2032–2037Google Scholar
  19. Hanna WW, Bashaw EC (1987) Apomixis: its identification and use in plant breeding. Crop Sci 27:1136–1139CrossRefGoogle Scholar
  20. Karia CT, Duarte JB, Araujo ACG (2006) Desenvolvimento de Cultivares do Gênero Brachiaria (trin.) Griseb. no Brasil. Documentos 163:57Google Scholar
  21. Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Ann Rev Plant Biol 54:547–574CrossRefGoogle Scholar
  22. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  23. Maluszynska J, Hasterok R (2005) Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogen Gen Res 109:310–314CrossRefGoogle Scholar
  24. Mendes DV (2004) Avaliação citogenética de acessos de Brachiaria brizantha (Gramineae). Universidade Estadual de Maringá, Maringá-PRGoogle Scholar
  25. Mendes DV, Boldrini KR, Mendes-Bonato AB, Pagliarini MS (2006) Cytological evidence of natural allopolyploidy in Brachiaria brizantha. Genet Mol Res 5:797–803PubMedGoogle Scholar
  26. Mendes-Bonato AB, Filho RGJ, Pagliarini MS, Valle CBd, Penteado MIO (2002a) Unusual cytological patterns of microsporogenesis in Brachiaria decumbens: abnormalities in spindle and defective cytokinesis causing precocious cellularization. Cell Biol Intern 26:641–646CrossRefGoogle Scholar
  27. Mendes-Bonato AB, Pagliarini MS, Forli F, Valle CBdo, Penteado MIO (2002b) Chromosome numbers and karyotype in Brachiaria brizantha (Gramineae). Euphytica 125:419–425CrossRefGoogle Scholar
  28. Mendes-Bonato AB, Risso-Pascotto C, Pagliarini MS, Valle CB (2006) Chromosome number and meiotic behaviour in Brachiaria jubata (Gramineae). J Genet 85:83–88CrossRefPubMedGoogle Scholar
  29. Miles JW, Escandon ML (1997) Further evidence on the inheritance of reproductive mode in Brachiaria. Can J Plant Sci 77:105–107Google Scholar
  30. Nogler GA (1984) Genetics of apospory in apomictic Ranunculus auricomus V. Conclusions Botanica Helvetica 94:411–422Google Scholar
  31. Penteado MIO, Santos ACM, Rodrigues IF, Valle CBdo, Seixas MAC, Esteves A (2000) Determinação de ploidia e avaliação da quantidade de DNA total em diferentes espécies do gênero Brachiaria. Boletim de Pesquisa 11. Embrapa Gado de Corte, Campo Grande, p 32Google Scholar
  32. Pikaard CS (2000) Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol Biol 43:163–177CrossRefPubMedGoogle Scholar
  33. Risso-Pascotto C, Pagliarini MS, Valle CBdo, Mendes-Bonato AB (2003) Chromosome number and microsporogenesis in pentaploid accession of Brachiaria brizantha (Gramineae). Plant Breed 122:136–140CrossRefGoogle Scholar
  34. Risso-Pascotto C, Pagliarini MS, Valle CBdo (2005) Multiple spindles and cellularization during microsporogenesis in an artificially induced tetraploid acession of Brachiaria ruziziensis (Gramineae). Plant Cell Rep 23:522–527CrossRefPubMedGoogle Scholar
  35. Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. Springer-Verlag, New YorkGoogle Scholar
  36. Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S–25S rRNA genes by fish as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303CrossRefGoogle Scholar
  37. Sotomayor-Ríos A, Velez-Fortuno J, Woodbury R, Schertz KF, Sierra-Bracero A (1968) Description and cytology of a form of Signalgrass (Brachiaria brizantha Stapf.) and its agronomic behavior compared to Guineagrass (Panicum maximum Jack.). J Agric University PR 44:208–220Google Scholar
  38. Swenne A, Louant B, Dujardin M (1981) Induction par la colchicine de formes autotetraploïdes chez Brachiaria ruziziensis Germain et Evrard (Graminée). Agro Tropic 36:134–141Google Scholar
  39. Thompson RA, Estes JR (1986) Anthecial and foliar micromorphology and foliar anatomy of Brachiaria (Poaceae: Paniceae). Am J Bot 3:398–408CrossRefGoogle Scholar
  40. Tucker MA, Koltunow AMG (2009) Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Funct Plant Biol 36:490–504CrossRefGoogle Scholar
  41. Utsunomiya KS, Pagliarini MS, Valle CBdo (2005) Microsporogenesis in tetraploid accessions of Brachiaria nigropedata (Ficalho & Hiern) Stapf (Gramineae). Biocell 29:295–301PubMedGoogle Scholar
  42. Valle CBdo, Bitencourt GA, Chiari L, Resende RMS, Jank L, Arce A (2008) Identification of the mode of reproduction in Brachiaria humidicola hybrids. In: XX International Congress on Sexual Plant Reproduction. Documentos 259, Embrapa Brasilia, p 197Google Scholar
  43. Valle CBdo, Glienke C (1991) New sexual accessions in Brachiaria. Apo News 3:11–13Google Scholar
  44. Valle CBdo, Savidan Y (1996) Genetics, cytogenetics and reproductive biology of Brachiaria. In: Miles JW, Maass BL, Valle CBdo (eds) Brachiaria: biology, agronomy and improvement. CIAT-EMBRAPA, Cali-Colombia, p 288Google Scholar
  45. Valle CBdo, Glienke C, Leguisamon GOC (1994) Inheritance of apomixis in Brachiaria, a tropical forage grass. Apo News 7:42–43Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stephan Nielen
    • 1
  • Lucas M. Almeida
    • 1
  • Vera T. C. Carneiro
    • 1
  • Ana Claudia G. Araujo
    • 1
  1. 1.Embrapa Genetic Resources and BiotechnologyParque Estação Biológica (PqEB)BrasíliaBrazil

Personalised recommendations