Sexual Plant Reproduction

, Volume 21, Issue 2, pp 99–111

Structural organization and cytochemical features of the pistil in Olive (Olea europaea L.) cv. Picual at anthesis

  • I. Serrano
  • C. Suárez
  • A. Olmedilla
  • H. F. Rapoport
  • M. I. Rodríguez-García
Original Article

Abstract

Pistil structure and composition are critical in recognizing and permitting the germination of suitable pollen grains. We have studied the structure of the different component tissues of the pistil, their organization and cytochemical features of olive flowers, Olea europaea L., at anthesis, an essential first step for understanding the processes of pollen-pistil interaction and fertilization. The pistil from olive cv. Picual trees is characterized by a wet bilobed stigma, a solid style and a bilocular ovary containing four ovules. The stigma is composed of external multicellular papillae and a non-papillate inner region of secretory cells. An exudate is observed on the surface of the papillae at anthesis, the moment when the flowers (first) open, but the anthers are not yet dehiscent. The inner secretory cells of the stigma and those of the stylar transmitting tissue are continuous, constituting a funnel-shaped zone which extends from within the stigma to the style base. The outer surface of the ovary and style epidermis is surrounded by a cuticle layer, while internally, the locule wall, formed by the innermost cells of the endocarp, consists of two layers of periclinally oriented cells with thicker cell walls. Starch granules are distributed differentially, concentrated most densely in the style (adjacent to the vascular bundles), in the distil region of the ovary, and in the micropylar ends of the ovules. Well-developed vascular bundles are present in the lower part of the stigma, the style and in the pericarp of the ovary. The histochemical identification of sugars and lipid substances within and around the vascular bundles suggests that they are involved in the transport of these materials. Ultrastructural observations confirm the presence of exudates on the papillar surface and confirm the secretory characteristics of the inner stigmatic cells. They also demonstrate marked differences in size, form, and vacuolar and cytoplasmic contents among the cells of the various style and upper ovary tissues. We provide the first detailed cytological description at anthesis of all the olive pistil tissues, indicating the structural and cytochemical basis for the pistil behavior which will transpire during the progamic phase.

Keywords

Olea europaea Flower anthesis Pistil Structure Cytochemistry 

References

  1. Alche JD, Rodriguez-Garcia MI (1988) Ultrastructural and cytochemical observations on intranuclear inclusions in Olea europaea. Inst Phys Conf Ser 93:65–66Google Scholar
  2. Alche JD, Rodriguez-Garcia MI (1989) Application of X-ray microanalysis, diffraction and cytochemical techniques in the study of the structure and chemical composition of inclusions in Olea europaea leaves. Inst Phys Conf Ser 98:759–762Google Scholar
  3. Alché JD, Fernandez MC, Rodriguez-Garcia MI (1994). Cytochemical features common to nucleoli and cytoplasmic nucleoloids of Olea europaea meiocytes: detection of rRNA by in situ hybridization. J Cell Sci 107:621–629PubMedGoogle Scholar
  4. Aloni B, Karni L, Zaidman Z, Schaffer AA (1996) Changes of carbohydrates in pepper (Capsicum annuum L.) Flowers in relation to their abscission under different shading regimes. Ann Bot 78:163–168CrossRefGoogle Scholar
  5. Altamura Betti MM, Pasqua G, Mazzolani G (1982) Development of the female gametophyte in Olea europaea L. Ann Bot 40:111–117Google Scholar
  6. Arbeloa A, Herrero M (1991) Development of the ovular structures in peach [Prunus persica (L.) Batsch]. New Phytol 118:527–534CrossRefGoogle Scholar
  7. Bartolini S, Guerriero R (1995) Self-compatibility in several clones of olive oil cv. ‘Leccino’. Adv Hortic Sci 9:71–74Google Scholar
  8. Bigazzi M (1984) The occurrence of intranuclear inclusions in the Labiatae, Verbenaceae and Scrophulariaceae. Caryologia 37:269–292Google Scholar
  9. Bronner R (1975) Simultaneous demonstration of lipids and starch in plant tissues. Stain Technol 50:1–4PubMedGoogle Scholar
  10. Brun WA, Betts KJ (1984) Source: sink relations of abscissing and non abscissing soybean flowers. Plant Physiol 75:187–191PubMedGoogle Scholar
  11. Ciampolini F, Cresti M, Kapil RN (1983). Fine structural and cytochemical characteristics of style and stigma in olive. Caryologia 36:211–230Google Scholar
  12. Cresti M, Ciampolini F, Pacini E, Sarfatti G (1978) Phytoferritin in plastids of the style of Olea europaea L. Acta Bot Neerl 27:417–423Google Scholar
  13. Cuevas J (2005) Autoincompatibilidad polen-pistilo, In: Rallo L, Barranco D, Caballero JM, Del Río C, Martín A, Tous J, Trujillo I (eds) Variedades de Olivo en España Junta de Andalucía, MAPA y Ediciones Mundi-Prensa Madrid, Spain, pp 301–308Google Scholar
  14. Cuevas J, Polito VS (1997) Compatibility relationships in ‘Manzanillo’ olive. Hortic Sci 32:1056–1058Google Scholar
  15. Cuevas J, Díaz-Hermoso AJ, Galián D, Hueso JJ, Pinillos V, Sola D, Polito VS (2001) Response to cross pollination and choice of pollinisers for the olive cultivars (Olea europaea L.) ‘Manzanilla de Sevilla’, ‘Hojiblanca’ and ‘Picual’. Olivae 85:26–32Google Scholar
  16. De Graaf BHJ, Derksen JWM, Mariani C (2001) Pollen and pistil in the progamic phase. Sex Plant Reprod 14:41–55CrossRefGoogle Scholar
  17. De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, BerlinGoogle Scholar
  18. Díaz A, Martín A, Rallo L, Barranco D, De la Rosa R (2006) Self incompatibility of ‘Arbequina’ and ‘Picual’ olives assessed by SSR markers. J Am Soc Hortic Sci 131:250–255Google Scholar
  19. Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:84–92CrossRefGoogle Scholar
  20. Feder NT, O’Brien P (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142CrossRefGoogle Scholar
  21. Felker FC, Robitaille HA, Hess FD (1983) Morphological and ultrastructural development and starch accumulation during chilling of sour cherry flower buds. Am J Bot 70:376–386CrossRefGoogle Scholar
  22. Fernández-Bolaños P, Frías L (1969) Autofertilidad y austerilidad en el olivo. Agricultura 443:150–151Google Scholar
  23. Fernández MC, Rodriguez-Garcia MI (1988) Pollen wall development in Olea europaea L. New Phytol 108:91–99CrossRefGoogle Scholar
  24. Fernández MC, Rodriguez-Garcia MI (1989) Developmental changes in the aperture during pollen grain ontogeny in Olea europaea L. New Phytol 11:717–723CrossRefGoogle Scholar
  25. Fernández MC, Rodriguez-Garcia MI (1994) Pollen grain aperture in Olea europaea L. Rev Palaeobot Palynol 85:99–109Google Scholar
  26. Fisher BB (1968) Protein staining of ribbonned epon sections for light microscopy. Histochemie 16:92–96PubMedCrossRefGoogle Scholar
  27. Fisher DB, Wu Y, Ku MSB (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100:1433–1441PubMedCrossRefGoogle Scholar
  28. Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427CrossRefGoogle Scholar
  29. Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signalling in the reproductive system of Hibiscus plants. Plant Physiol 109:375–384PubMedGoogle Scholar
  30. Ghosh S, Shivanna KR (1984) Structure and cytochemistry of the stigma and pollen–pistil interaction in Zephyranthes. Ann Bot 53:91–106Google Scholar
  31. González MV, Coque M, Herrero M (1996) Pollen-pistil interaction in kiwifruit (Actinidia deliciosa; Actinidiaceae). Am J Bot 83:148–154CrossRefGoogle Scholar
  32. Herrero M (1992) Mechanisms in the pistil that regulate gametophyte population in peach (Prunus persica). In: Ottaviano E, Mulcahy DL, Sari Gorla M, Bergamini Mulcahy G (eds) Angiosperm pollen and ovule. Springer, New York, pp 377–381Google Scholar
  33. Herrero M, Arbeloa A (1989) Influence of the pistil on pollen tube kinetics in peach (Prunus persica). Am J Bot 76:1441–1447CrossRefGoogle Scholar
  34. Herrero M, Dickinson HG (1979) Pollen-pistil incompatibility in Petunia hybrida: changes in the pistil following compatible and incompatible intraspecific crosses. J Cell Sci 36:1–18PubMedGoogle Scholar
  35. Herrero M, Hormaza JI (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9:343–347CrossRefGoogle Scholar
  36. Heslop-Harrison J, Heslop-Harrison Y (1985) Surfaces and secretions in the pollen-stigma interaction: a brief review. J Cell Sci Suppl 2:287–300PubMedGoogle Scholar
  37. Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258Google Scholar
  38. Heslop-Harrison J, Heslop-Harrison Y, Reger BJ (1985) The pollen–stigma interaction in the grasses. Pollen tube guidance and the regulation of tube number in Zea mays L. Acta Bot Neerl 34:193–211Google Scholar
  39. Jedrzejuk A, Szlachetka W (2005) Development of flower organs in common lilac (Syringa vulgaris L.) cv. Mme Florent Stepman. Acta Biol Cracov 47:41–52Google Scholar
  40. Kadej AJ, Wilms HJ, Willemse MTM (1985) Stigma and stigmatoid tissue of Lycopersicon esculentum. Acta Bot Neerl 34:95–104Google Scholar
  41. King JR (1938) Morphological development of the fruit of the olive. Hilgardia 11:437–458Google Scholar
  42. Knox RB (1984) Pollen-pistil interactions. In: Linskens HF, Heslop-Harrison J (eds) Encyclopedia of plant physiology, new series, vol. 17. Springer, Berlin, pp 508–608Google Scholar
  43. Knox RB, Williams EG, Dumas C (1986) Pollen, pistil, and reproductive function in crop plants. Plant Breeding Rev 4:9–79Google Scholar
  44. Lavee S, Taryan J, Levin J, Haskal A (2002) The significance of cross-pollination for various olive cultivars under irrigated intensive growing conditions. Olivae 91:25–36Google Scholar
  45. Madey E, Nowack LM, Thompson JE (2001) Isolation and characterization of lipid in phloem sap of canola. Planta 214:625–634CrossRefGoogle Scholar
  46. Majewska-Sawka A, Fernández MC, M´rani-Alaoui M, Münster A, Rodríguez-García MI (2002) Cell wall reformation by pollen tube protoplasts of olive (Olea europaea L.): comparison with pollen tube wall. Sex Plant Reprod 15:21–29CrossRefGoogle Scholar
  47. Marentes E, Grusak MA (1998) Mass determination of low-molecular-weight proteins in phloem sap using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Exp Bot 49:903–911CrossRefGoogle Scholar
  48. Martínez-Pallé E, Herrero M (1995) The ponticulus: a structure bridging pollen tube access to the ovule in Pistacia vera. Sex Plant Reprod 8:217–222CrossRefGoogle Scholar
  49. Martins PC, Cordeiro AM, Rapoport HF (2006) Flower quality in orchards of olive, Olea europaea L., cv. Morisca. Adv Hortic Sci 20:262–266Google Scholar
  50. Moorkerjee S, Guerin J, Collins G, Ford C, Sedgley M (2005) Paternity analysis using microsatellite markers to identify pollen donors. Theor Appl Genet 111:1174–1182CrossRefGoogle Scholar
  51. Noher de Halac I, Fama G, Cismondi IA (1992) Changes in lipids and polysaccharides during pollen ontogeny in Oenothera anthers. Sex Plant Reprod 5:110–116CrossRefGoogle Scholar
  52. Pacini E, Juniper BE (1979a) The ultrastructure of pollen-grain development in olive (Olea europaea) 1. Proteins in the pore. New Phytol 83:157–164CrossRefGoogle Scholar
  53. Pacini E, Juniper BE (1979b) The ultrastructure of pollen-grain development in olive (Olea europaea) 2. Secretion by the tapetal cell. New Phytol 83:165–174CrossRefGoogle Scholar
  54. Rallo P, Rapoport HF (2001) Early growth and development of the olive fruit mesocarp. J Hortic Sci Biotech 76:408–412Google Scholar
  55. Rapoport HF (2004) Botánica y morfología, In: D Barranco R Fernández-Escobar L Rallo (eds) El cultivo del olivo, 5th edn. Junta de Andalucia y Mundi-Prensa, Andalucia, pp 37–62Google Scholar
  56. Reale L, Gromo S, Bonofiglio T, Orlandi F, Forniaceri M, Ferranti F, Romano B (2006) Reproductive biology of olive (Olea europaea L.) DOP Umbria cultivars. Sex Plant Reprod 19:151–161CrossRefGoogle Scholar
  57. Rodrigo J, Hormaza JI, Herrero M (2000) Ovary starch reserves and flower development in apricot (Prunus armeniaca). Physiol Plant 108:35–41CrossRefGoogle Scholar
  58. Rodríguez-García MI, Fernández MC (1990) Ultrastructural evidence of endoplasmic reticulum differentiation during the maturation of the olive pollen grain. Plant Syst Evol 171:221–231CrossRefGoogle Scholar
  59. Rodríguez-García MI, Alche JD, Fernández MC (1995) Immunocytochemical localization of allergenic protein (Ole e 1) in the endoplasmic reticulum of the developing olive pollen grain (Olea europaea L.). Planta 196:558–563CrossRefGoogle Scholar
  60. Rodríguez-García MI, M´rani-Alaoui M, Fernández MC (2003a) Behavior of storage lipids during pollen development and pollen grain germination of olive (Olea europaea L.). Protoplasma 221:237–244PubMedGoogle Scholar
  61. Rodriguez-García MI, M´rani-Alaoui M, De la Flor Díaz J, Fernández MC (2003b) Observations on microtubules and nuclei motility in the pollen tube of olive (Olea europaea L.) pollen. Acta Biol Cracov 45:97–101Google Scholar
  62. Sanzol J, Herrero M (2001) The effective pollination period in fruit trees. Sci Hortic 90:1–17 CrossRefGoogle Scholar
  63. Sedgley M (1979) Structural changes in the pollinated and non-pollinated avocado stigma and style. J Cell Sci 38:49–60PubMedGoogle Scholar
  64. Uwate WJ, Lin J (1981) Development of the stigmatic surface of Prunus avium L., sweet cherry. Am J Bot 68:1165–1176CrossRefGoogle Scholar
  65. Weintraub M, Ragetli HW, Schroeder B (1971). The protein composition of nuclear crystals in leaf cells. Am J Bot 58:182–190CrossRefGoogle Scholar
  66. Zinselmeier C, Westgate ME, Schussler JR, Jones RJ (1995) Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol 107:385–391PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • I. Serrano
    • 1
  • C. Suárez
    • 1
  • A. Olmedilla
    • 1
  • H. F. Rapoport
    • 2
  • M. I. Rodríguez-García
    • 1
  1. 1.Department of Biochemistry, Cell and Molecular Biology of PlantsEstación Experimental del Zaidín, CSICGranadaSpain
  2. 2.Department of Crop ProtectionInstituto de Agricultura Sostenible, CSICCórdobaSpain

Personalised recommendations