Sexual Plant Reproduction

, Volume 16, Issue 2, pp 71–76 | Cite as

The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale)

  • Peter J. van Dijk
  • Peter van Baarlen
  • J. Hans de Jong
Original Article

Abstract

Apomictic seed development in dandelion (Taraxacum officinale) involves (1) restitutional meiosis (diplospory), (2) egg cell parthenogenesis, and (3) autonomous endosperm development. The question is whether these elements of apomixis are controlled by one single gene or by several independent genes. Five triploid non-apomictic hybrids, obtained in diploid sexual × triploid apomict crosses were characterized using cyto-embryological and genetic methods. Nomarski-differential interference contrast microscopy and the transmission of microsatellite markers and ploidy levels indicated that the hybrids combined elements of the apomictic and the sexual developmental pathway. Hybrids form two complementary groups with respect to the presence or absence of parthenogenesis and autonomous endosperm development. The occurrence of complementary apomixis-recombinants suggests that parthenogenesis and autonomous endosperm development in Taraxacum are regulated independently by different genes. This study also indicates that early embryo development is independent of endosperm formation, but that endosperm is essential for later embryo growth.

Keywords

Parthenogenesis Diplospory Unreduced egg cells Autonomous endosperm 

Notes

Acknowledgement

We thank Tanja Bakx-Schotman for technical assistance.

References

  1. Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton, Fla.Google Scholar
  2. Bicknell R, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237CrossRefPubMedGoogle Scholar
  3. Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228CrossRefPubMedGoogle Scholar
  4. Cooper DC, Brink RA (1949) The endosperm-embryo relationship in an autonomous apomict, Taraxacum officinale. Bot Gaz 111:139–153CrossRefGoogle Scholar
  5. Falque M, Keurentjes J, Bakx-Schotman JMT, Van Dijk PJ (1998) Development and characterization of microsatellite markers in the sexual-apomictic complex Taraxacum officinale (dandelion). Theor Appl Genet 97:283–292Google Scholar
  6. Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb-group gene in Arabidopsis. Science 280:446–450PubMedGoogle Scholar
  7. Gustafsson Å (1947a) Apomixis in angiosperms II. Lunds Univ Årsskr Avd 2 42:71–179Google Scholar
  8. Gustafsson Å (1947b) Apomixis in angiosperms III. Lunds Univ Årsskr Avd 2 43:183–370Google Scholar
  9. Harlan JR, DeWet JMJ (1975) On Ö. Winge and a prayer: The origins of polyploidy. Bot Rev 41:361–390Google Scholar
  10. Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437CrossRefPubMedGoogle Scholar
  11. Mogie M (1988) A model for the evolution and control of generative apomixis. Biol J Linn Soc 35:127–153Google Scholar
  12. Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, LondonGoogle Scholar
  13. Nawaschin S (1898) Resultate einer revision der befruchungsvorgänge bei Lilium martagon und Fritillaria tenella. Bull Sci Acad Imp Sci St.-Petersbourg 33:39–47Google Scholar
  14. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 475–518Google Scholar
  15. Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390PubMedGoogle Scholar
  16. Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:5319–5324CrossRefPubMedGoogle Scholar
  17. Richards AJ (1970) Eutriploid facultative agamospermy in Taraxacum. New Phytol 69:761–774Google Scholar
  18. Richards AJ (1973) The origin of Taraxacum agamospecies. Bot J Linn Soc 66:189–211Google Scholar
  19. Rogstad SH (1992) Saturated NaCl-CTAB solutions as a means of field preservation of leaves for DNA analyses. Taxon 41:701–708Google Scholar
  20. Sherwood RT (2001) Genetic analysis of apomixis. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, European Commission DG VI (FAIR), Mexico, pp 64–82Google Scholar
  21. Sørensen T (1958) Sexual chromosome-aberrants in triploid apomictic Taraxaca. Bot Tidskr 54:1–22Google Scholar
  22. Sørensen T, Gudjónsson, G (1946) Spontaneous chromosome-aberrants in triploid apomictic Taraxaca. K Dan Vidensk Selsk Biol Skr 4:3–48Google Scholar
  23. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  24. Tas ICQ, Van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83:707–714CrossRefPubMedGoogle Scholar
  25. Van Baarlen P, van Dijk PJ, Hoekstra RF, De Jong JH (2000) Meiotic recombination in sexual diploid and apomictic triploid dandelions (Taraxacum officinale L.). Genome 43:827–835CrossRefPubMedGoogle Scholar
  26. Van Baarlen P, De Jong JH, Van Dijk PJ (2002) Comparative cyto-embryological investigations of sexual and apomictic dandelions (Taraxacum) and their apomictic hybrids. Sex Plant Reprod 15:31–38CrossRefGoogle Scholar
  27. Van Dijk PJ, Van Damme JMM (2000) Apomixis-technology and the paradox of sex. Trends Plant Sci 5:81–84CrossRefPubMedGoogle Scholar
  28. Van Dijk PJ, Tas ICQ, Falque M, Bakx-Schotman JMT (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83:715–721PubMedGoogle Scholar
  29. Vielle-Calzada J-P, Crane CF, Stelly DM (1996) Apomixis. The asexual revolution. Science 274:1322–1323CrossRefGoogle Scholar
  30. Willemse MTM, Van Went JL (1984) The female gametophyte. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 156–196Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Peter J. van Dijk
    • 1
  • Peter van Baarlen
    • 2
  • J. Hans de Jong
    • 2
  1. 1.Centre for Terrestrial EcologyNetherlands Institute of EcologyHeterenThe Netherlands
  2. 2.Laboratory of Genetics, Department of Plant SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations