Sexual Plant Reproduction

, Volume 16, Issue 2, pp 51–58 | Cite as

Coevolution of apomixis and genome size within the genus Hypericum

Original Article


Trends concerning coevolution of mode of reproduction and genome size were elucidated by screening both components in 71 species/subspecies of the genus Hypericum. Two independent agamic complexes were identified (sections Ascyreia with ten, and Hypericum with five apomictic species). In the phylogenetically younger section Hypericum, the relative DNA content of apomicts is increased solely by polyploidy. The apomicts of the evolutionarily older section Ascyreia have significantly larger genomes than all other species due to polyploidization and higher DNA content per chromosome. An accumulation of retroelements might be one reason for the larger genomes. The male fertility of the apomicts was reduced compared to sexuals, although all apomicts were facultative pseudogamous, forming reduced male gametes. Another form of apomixis (obligate pseudogamous with unreduced male gametes), probably indicating an escape from interspecific sterility, was found in H. scabrum, the only case of asexual seed formation outside of sections Ascyreia and Hypericum. The described scenario for evolution of apomixis in relation to genome size deserves consideration in harnessing of apomixis.


Apomixis Evolution Genome size Hypericum Retroelements 



The authors thank many botanical gardens for their kind supply of seed samples, R. Fritsch for the collection of seeds from H. scabrum in Uzbekistan and Armenia, R. Rieger for critical reading of the manuscript and U. Tiemann for design of Fig. 1 as well as Leane Börner and Heidi Block for help with flow cytometric analyses, chromosome counting and determination of pollen stainability.


  1. Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97:14473–14477CrossRefPubMedGoogle Scholar
  2. Bennett MD, Leitch IJ (2000) Variation in nuclear DNA amount (C-value) in monocots and its significance. In: Wilson KL, Morrison DA (eds) Monocots: systematic and evolution. CSIRO, Melbourne, pp 137–146Google Scholar
  3. Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514Google Scholar
  4. Bharathan G (1996) Reproductive development and nuclear DNA content in angiosperms. Am J Bot 83:440–451Google Scholar
  5. Darlington CD (1939) The evolution of genetic systems. Cambridge University Press, LondonGoogle Scholar
  6. Fedoroff N (2000) Transposons and genome evolution in plants. Proc Natl Acad Sci USA 97:7002–7007PubMedGoogle Scholar
  7. Greilhuber J (1979) Evolutionary changes of DNA and heterochromatin amounts in the Scilla bifolia group (Liliaceae). Plant Syst Evol [Suppl] 2:263–280Google Scholar
  8. Hammer K (2001) Guttiferae (Clusiaceae). In: Hanelt P, IPK (eds) Mansfeld's encyclopedia of agricultural and horticultural crops, vol 3. Springer, Berlin Heidelberg New York, pp 1345–1360Google Scholar
  9. Hickey DA (1982) Selfish DNA: a sexuality-transmitted nuclear parasite. Genetics 101:519–531PubMedGoogle Scholar
  10. Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99CrossRefPubMedGoogle Scholar
  11. Kumar A, Bennetzen JL (2000) Retrotransposons: central players in the structure, evolution and function of plant genomes. Trends Plant Sci 5:509–510PubMedGoogle Scholar
  12. Lihová J, Mártonfi P, Mártonfiová L (2000) Experimental study on reproduction of Hypericum × desetangsii nothosubsp. carinthiacum (A. Fröhl.) N. Robson (Hypericaceae). Caryologia 53:127–132Google Scholar
  13. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108CrossRefPubMedGoogle Scholar
  14. Matzk F, Meister A, Brutovská R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282PubMedGoogle Scholar
  15. Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, LondonGoogle Scholar
  16. Nielsen N (1924) Chromosome numbers in the genus Hypericum (a preliminary note). Hereditas 5:378–382Google Scholar
  17. Noack KL (1939) Über Hypericum-Kreuzungen VI. Fortpflanzungsverhältnisse und Bastarde von Hypericum perforatum L.. Z Induk Abstamm Vererbungsl 76:569–601Google Scholar
  18. Ohri D, Fritsch RM, Hanelt P (1998) Evolution of genome size in Allium (Alliaceae). Plant Syst Evol 210:57–86Google Scholar
  19. Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28CrossRefPubMedGoogle Scholar
  20. Pupilli F, Labombarda P, Caceres ME, Quarin CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of rice chromosome 12. Mol Breed 8:53–61CrossRefGoogle Scholar
  21. Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249CrossRefGoogle Scholar
  22. Robson NKB (1977) Studies in the genus Hypericum L. (Guttiferae). 1. Infrageneric classification. Bull Br Mus (Nat Hist) Bot 5:293–355Google Scholar
  23. Robson NKB (1981) Studies in the genus Hypericum L. (Guttiferae). 2. Characters of the genus. Bull Br Mus (Nat Hist) Bot 8:55–226Google Scholar
  24. Robson NKB (1985) Studies in the genus Hypericum L. (Guttiferae). 3. Sections 1. Campylosporus to 6a. Umbraculoides. Bull Br Mus (Nat Hist) Bot 12:163–325Google Scholar
  25. Robson NKB (2001) Studies in the genus Hypericum L. (Guttiferae) 4(1). Sections 7. Roscyna to 9. Hypericum sensu lato (part 1). Bull Br Mus (Nat Hist) Bot 31:37–88Google Scholar
  26. Robson NKB (2002) Studies in the genus Hypericum L. (Guttiferae) 4(2). Sections 9. Hypericum sensu lato (part 2): subsection 1. Hypericum series 1. Hypericum. Bull Br Mus (Nat Hist) Bot 32:61–123Google Scholar
  27. Roche D, Hanna WW, Ozias-Akins P (2001) Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sex Plant Reprod 13:343–349Google Scholar
  28. Wright S, Finnegan D (2001) Genome evolution: sex and the transposable element. Curr Biol 11:R296–R299CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institut für Pflanzengenetik und KulturpflanzenforschungGaterslebenGermany
  2. 2.Fachbereich 11, Agrarbiodiversität Witzenhausen Universität KasselWitzenhausenGermany

Personalised recommendations