Advertisement

VC-Dimensions of Short Presburger Formulas

  • Danny NguyenEmail author
  • Igor Pak
Article
  • 3 Downloads

Abstract

We study VC-dimensions of short formulas in Presburger Arithmetic, defined to have a bounded number of variables, quantifiers and atoms. We give both lower and upper bounds, which are tight up to a polynomial factor in the bit length of the formula.

Mathematics Subject Classification (2010)

03C45 52C07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson and S. Starchenko: Vapnik-Chervonenkis density in some theories without the inde-pendence property, I, Trans. AMS 368 (2016), 5889–5949.CrossRefzbMATHGoogle Scholar
  2. [2]
    A. Barvinok and K. Woods: Short rational generating functions for lattice point problems, Jour. AMS 16 (2003), 957–979.MathSciNetzbMATHGoogle Scholar
  3. [3]
    A. Chernikov: Models theory and combinatorics, course notes, UCLA; available electronically at https://tinyurl.com/y8ob6uyv.Google Scholar
  4. [4]
    M. J. Fischer and M. O. Rabin: Super-Exponential Complexity of Presburger Arithmetic, in: Proc. SIAM-AMS Symposium in Applied Mathematics, AMS, Providence, RI, 1974, 27–41.Google Scholar
  5. [5]
    M. Karpinski and A. Macintyre: Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks, J. Comput. System Sci. 54 (1997), 169–176.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Karpinski and A. Macintyre: Approximating volumes and integrals in o-minimal and p-minimal theories, in: Connections between model theory and algebraic and analytic geometry, Seconda Univ. Napoli, Caserta, 2000, 149–177.Google Scholar
  7. [7]
    D. Nguyen and I. Pak: Enumeration of integer points in projections of unbounded polyhedra, SIAM J. Discrete Math. 32 (2018), 986–1002.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Nguyen and I. Pak: Short Presburger Arithmetic is hard, in: Proc. 58th FOCS, IEEE, Los Alamitos, CA, 2017, 37–48.Google Scholar
  9. [9]
    J. C. Lagarias and A. M. Odlyzko: Computing π(x): an analytic method, J. Al-gorithms 8 (1987), 173–191.MathSciNetzbMATHGoogle Scholar
  10. [10]
    D. C. Oppen: A 222pn upper bound on the complexity of Presburger arithmetic, J. Comput. System Sci. 16 (1978), 323–332.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    N. Sauer: On the density of families of sets, J. Combin. Theory, Ser. A 13 (1972), 145–147.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Shelah: A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247–261.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    L. J. Stockmeyer and A. R. Meyer: Word problems requiring exponential time: preliminary report, in: Proc. Fifth STOC, ACM, New York, 1973, 1–9.Google Scholar
  14. [14]
    T. Tao, E. Croot and H. Helfgott: Deterministic methods to find primes, Math. Comp. 81 (2012), 1233–1246.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    V. N. Vapnik and A. Ja. Červonenkis: The uniform convergence of frequencies of the appearance of events to their probabilitie, Theor. Probability Appl. 16 (1971), 264–280.MathSciNetCrossRefGoogle Scholar
  16. [16]
    V. N. Vapnik: Statistical learning theory, John Wiley, New York, 1998.zbMATHGoogle Scholar
  17. [17]
    V. D. Weispfenning: Complexity and uniformity of elimination in Presburger arithmetic, in: Proc. 1997 ISSAC, ACM, New York, 1997, 48–53.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations