The Minimally Non-Ideal Binary Clutters with a Triangle

  • Ahmad AbdiEmail author
  • Bertrand Guenin


It is proved that the lines of the Fano plane and the odd circuits of K5 constitute the only minimally non-ideal binary clutters that have a triangle.

Mathematics Subject Classification (2010)

90C57 05B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Abdi and B. Guenin: The two-point Fano and ideal binary clutters, submitted.Google Scholar
  2. [2]
    W. G. Bridges and H. J. Ryser: Combinatorial designs and related systems, J. Algebra 13 (1969), 432–446.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Chun and J. Oxley: Internally 4-connected binary matroids with every element in three triangles, preprint, arXiv:1608.06013, (2016)Google Scholar
  4. [4]
    G. Cornuéjols and B. Guenin: Ideal binary clutters, connectivity, and a conjecture of Seymour, SIAM J. Discrete Math. 15 (2002), 329–352.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Edmonds and D. R. Fulkerson: Bottleneck extrema, J. Combin. Theory Ser. B 8 (1970), 299–306.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    B. Guenin: A characterization of weakly bipartite graphs, J. Combin. Theory Ser. B 83 (2001), 112–168.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    B. Guenin: Integral polyhedra related to even-cycle and even-cut matroids, Math. Oper. Res. 27 (2002), 693–710.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    B. Guenin, I. Pivotto, P. Wollan: Stabilizer theorems for even cycle matroids, J. Combin. Theory Ser. B 118 (2016), 44–75.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Lehman: A solution of the Shannon switching game, Society for Industrial Appl. Math. 12 (1964), 687–725.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Lehman: The width-length inequality and degenerate projective planes, DIMACS. 1 (1990), 101–105.MathSciNetzbMATHGoogle Scholar
  11. [11]
    C. Lütolf and F. Margot: A catalog of minimally nonideal matrices, Math. Methods of Oper. Res. 47 (1998), 221–241.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Novick and A. Sebő: On combinatorial properties of binary spaces, IPCO 4 (1995), 212–227.MathSciNetGoogle Scholar
  13. [13]
    J. Oxley: Matroid theory, second edition, Oxford University Press, New York, 2011.CrossRefzbMATHGoogle Scholar
  14. [14]
    I. Pivotto: Even cycle and even cut matroids, Ph.D. dissertation, University of Waterloo, 2011.Google Scholar
  15. [15]
    A. Schrijver: A short proof of Guenin's characterization of weakly bipartite graphs, J. Combin. Theory Ser. B 85 (2002), 255–260.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    P. D. Seymour: Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305–359.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    P. D. Seymour: On Lehman's width-length characterization, DIMACS 1 (1990), 107–117.MathSciNetzbMATHGoogle Scholar
  18. [18]
    P. D. Seymour: The forbidden minors of binary matrices, J. London Math. Society 2 (1976), 356–360.CrossRefzbMATHGoogle Scholar
  19. [19]
    P. D. Seymour: The matroids with the max-ow min-cut property, J. Combin. Theory Ser. B 23 (1977), 189–222.CrossRefzbMATHGoogle Scholar
  20. [20]
    P. D. Seymour: Triples in matroid circuits. Europ. J. Combinatorics 7 (1986), 177–185.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    C. H. Shih: On graphic subspaces of graphic spaces, Ph.D. Dissertation, Ohio State University, 1982.Google Scholar
  22. [22]
    H. Whitney: 2-isomorphic graphs, Amer. J. Math. 55 (1933), 245–254.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    T. Zaslavsky: Signed graphs, Discrete Appl. Math. 4 (1982), 47–74.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2019

Authors and Affiliations

  1. 1.Tepper School of BusinessCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooOntarioCanada

Personalised recommendations